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Introduction: Concepts in
Psychology and Neuroscience



What are we talking about?

“Concept learning”: one of the oldest tasks studied in cognitive
psychology and machine learning. Understandings have diverged
across fields.

• Psychologists talk about using concepts to build propositions,
productively.

• Neuroscientists talk about concepts in terms of embodied
simulation, re-enactment, or reinstatement.

• Machine learners talk about “concept learning” as learning a
classifier function over an arbitrary feature space.
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Categories as per psychologists

“In psychology, a category is a group of instances sharing a
functional similarity within a context (e.g., [7]).”

Questions:

• What are instances?
• What sort of functional similarity?
• What supplies the context? What does it mean to be within a
context?

Intuitively “obvious” answers often need a lot of work to reduce to
lower-level science. These are good targets for investigation.
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Concepts as per neuroscience

“A simulator is a distributed collection of modality-specific
memories captured across a category’s instances. When the
category is processed on a given occasion, only a small subset of
this information becomes active – not the entire simulator. The
active subset is then run as a simulation that functions as one of
infinitely many conceptualizations for the category.” [2]

Questions:

• What are instances?
• What matches simulators to categories of instances?
• What is an occasion?
• How can a finite brain support infinitely many
conceptualizations?
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What does the brain use them for?

Why bother having concepts and categories? Many AI models get by
without them! Some common answers:

• Because they objectively exist as Platonic Forms,
• Because we evolved with them,
• To model the world’s causal structure,
• To make decisions between one thing and another,
• To regulate interoceptive sensations,

“The difficulty of defining concept raises the issue of whether it is a
useful scientific construct. Perhaps no discrete entity or event
constitutes a concept.”
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Concepts and Categories in
Machine Learning



Mathematical setup

In machine learning, we give precise meanings to some of the terms
we have discussed.

• Feature space: a mathematical space of all the quantities we
measure in each instance, usually RD .

• Instance: a point in the feature space x ∈ RD , or a collection of
measurements. Usually sampled from the real world.

• Classifier: a function from a feature space to a yes-or-no
decision, f : RD → {+1,−1}.
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Why machine learning rather than “just” statistics?

Machine learning investigators usually work under a
distribution-free assumption: we receive data x1, . . . , xk ∈ RD , and
we assume we cannot directly know their distribution, p(X).

We then search for a function out of some known family that does
“optimally” at answering a fixed question with a fixed framing.

• Classification: a yes-or-no or which-one-of-many question
• Regression: a continuous, how-much question
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The major machine learning tasks

In machine learning, we mostly investigate one of several very broad
tasks.

• Supervised learning: learn to answer a question by guessing,
receiving the answer, and improving your guesses

• Reinforcement learning: learn to act on an environment by
guessing actions, being rewarded or punished, and trying to
earn rewards

• Unsupervised learning: learn to answer a question without
being training on correct answers
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Category Construction in
Unsupervised Learning



What is concept learning in machine learning?

Concept learning is usually construed as the supervised or
unsupervised learning of classifications. Categories are then
considered to be the instances classified as belonging to the learned
concept.

In engineering applications, supervised learning is most common.
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How is this unlike psychology and neuroscience?

• Supervised learning requires a human “teacher” to label data.
• This makes no pretense to capture ad-hoc concept construction,
• Nor embodied simulation,
• Nor can the concepts change with context, time, or bodily
demand.

• But it has been commercially successful: ImageNet, AlphaGo
Zero, face recognition, etc.

This limited achievement has been the real content of the recent
boom in “artificial intelligence”.
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Unsupervised category construction?

The major unsupervised learning method for classification tasks is
clustering. Given data in a feature space, you try to find “blobs” in
the feature space. Any blob that does well by some metric can be
labelled as a “cluster” and construed as a category.
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What does this still lack?

Machine learning experts have begun to push for better
unsupervised learning via prediction (eg. [10]). But (most) clustering
methods do not predict over time, nor cluster as a function of
context.

They cannot construct the kinds of dynamic, ad-hoc concepts we
know the mind constructs.

Nor do they include the interoceptive features necessary for emotion
concepts: bodily states, motivational valence, and a sense of agency.
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Working back up: Concepts in
Computational Cognitive Science



Taking the mind seriously

What if we started from what we know the brain and mind do, and
tried to find which machine learning methods fit best?

Facts about the mind Modeling methods

Sensory simulation Generative models
Plausible inference Probabilistic models (PGMs)

Goal-driven simulation Bayesian conditioning in PGMs
Contextual simulation Hierarchical PGMs
Prediction over time Dynamical PGMs
Acting in the world Causal PGMs

Universality
Compositionality Probabilistic programs

Table 1: Known facts about the mind as criteria for machine learning

Now we sound more like Noah Goodman[6] or Karl Friston[4, 5].
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Ideas to drive PEN on concepts

• Hierarchical, dynamical probabilistic programs as simulators,
with predictive coding as their neural implementation.

• Why have concepts? To learn, re-use, and compose simulators
for novel situations, enabling us to survive and thrive.

• Compositional primitives make concept construction natural.
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How are emotion concepts unique?

Emotion concepts predict interoceptive sensations: positive vs
negative, not just predictable vs surprising. This defies the (purist)
Free Energy Principle.

But they still have the features of other concepts:

• Valence and arousal commensurable within concept
components,

• Affective concepts have compositionality,
• Affect can attach to anything causally connected to regulating
the body.

This defies the usual model of valenced behavior in machine
learning (reinforcement learning)
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A pictorial example of affective concept composition
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Conclusions: how do we bridge
the gaps?



What mathematics can help with concepts?

• Probability: plausible, graded inferences,
• Category theory: compositional structures,
• Dynamical systems: prediction over time

Probabilistic programs can combine these, with practical
applications.
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Is that all? No.

We lack a compositional, dynamical formalism for affect and control.
I would claim this is why “deep reinforcement learning doesn’t work
yet”[8].

Active inference model remains difficult and ad-hoc. Consider:
Friston’s models [5] vs. ForneyLab [3].

Active inference plays an important role in the Theory of Constructed
Emotion[1].
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Where to go from here?

We have a solid starting point to study how the mind constructs,
composes, and re-uses ad-hoc concepts.

Computational grounding:

• Adaptor grammars[9]
• Probabilistic programs
• Dynamical Bayes nets

Psychological grounding:

• Embodied simulation
• Emotional granularity studies
• Studies of learning and development

Empirical ground:

• Emotional granularity data

19



Questions?
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