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Abstract. Category theory has been successfully applied in various
domains of science, shedding light on universal principles unifying diverse
phenomena and thereby enabling knowledge transfer between them.
Applications to machine learning have been pursued recently, and yet
there is still a gap between abstract mathematical foundations and con-
crete applications to machine learning tasks. In this paper we introduce
DisCoPyro as a categorical structure learning framework, which com-
bines categorical structures (such as symmetric monoidal categories and
operads) with amortized variational inference, and can be applied, e.g.,
in program learning for variational autoencoders. We provide both math-
ematical foundations and concrete applications together with compari-
son of experimental performance with other models (e.g., neuro-symbolic
models). We speculate that DisCoPyro could ultimately contribute to the
development of artificial general intelligence.

Keywords: Structure learning · Program learning · Symmetric
monoidal category · Operad · Amortized variational Bayesian inference

1 Introduction

Category theory has been applied in various domains of mathematical science,
allowing us to discover universal principles unifying diverse mathematical phe-
nomena and thereby enabling knowledge transfer between them [7]. Applications
to machine learning have been pursued recently [21]; however there is still a large
gap between foundational mathematics and applicability in concrete machine
learning tasks. This work begins filling the gap. We introduce the categorical
structure learning framework DisCoPyro, a probabilistic generative model with
amortized variational inference. We both provide mathematical foundations and
compare with other neurosymbolic models on an example application.

Here we describe why we believe that DisCoPyro could contribute, in the long
run, to developing human-level artificial general intelligence. Human intelligence
supports graded statistical reasoning [15], and evolved to represent spatial (geo-
metric) domains before we applied it to symbolic (algebraic) domains. Symmet-
ric monoidal categories provide a mathematical framework for constructing both
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symbolic computations (as in this paper) and geometrical spaces (e.g. [17]). We
take Lake [15]’s suggestion to represent graded statistical reasoning via probabil-
ity theory, integrating neural networks into variational inference for tractability.
In terms of applications, we get competitive performance (see Subsect. 3.2 below)
by variational Bayes, without resorting to reinforcement learning of structure as
with modular neural networks [13,20].

The rest of the paper is organized as follows. In Sect. 2, we first introduce
mathematical foundations of DisCoPyro (Subsects. 2 and 2.1). In Sect. 3 we then
explain how to train DisCoPyro on a task (Subsect. 2.1) and provide experimen-
tal results and performance comparisons (Subsect. 3.2). Figure 1 demonstrates
the flow of execution during the training procedure for the example task. We
conclude and discuss further applications in Sect. 4. We provide an example
implementation at https://github.com/neu-pml/discopyro with experiments at
https://github.com/esennesh/categorical bpl. DisCoPyro builds upon Pyro [2]
(a deep universal probabilistic programming language), DisCoCat [4] (a dis-
tributional compositional model for natural language processing [4]), and the
DisCoPy [6] library for computing with categories.

1.1 Notation

This paper takes symmetric monoidal categories (SMCs) C and their correspond-
ing operads O as its mathematical setting. The reader is welcome to see Fong [7]
for an introduction to these. SMCs are built from objects Ob(C) and sets of
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Fig. 1. Example experiment. In each epoch of training, DisCoPyro learns variational
autoencoder structures by sampling them from its skeleton according to a wiring dia-
gram, then learning their faithful inverses as approximate posteriors.

https://github.com/neu-pml/discopyro
https://github.com/esennesh/categorical_bpl


246 E. Sennesh et al.

morphisms C(τ1, τ2) between objects τ1, τ2 ∈ Ob(C). Operads are built from
types Ty(O) and sets of morphisms O(τ1, τ2) between types τ1, τ2 ∈ Ty(O). An
SMC is usually written (C,⊗, I) with a product operation ⊗ over objects and
morphisms and a unit I of ⊗. In both settings, every object/type τ has a unique
identity morphism idτ . Categories support composition g ◦f on morphisms, and
operads support indexed composition g ◦i f (for i ∈ N) on morphisms.

2 Foundations of DisCoPyro

In essence, Definition 1 below exposes a finite number of building blocks (genera-
tors) from an SMC, and the morphisms constructed by composing those genera-
tors with ◦ and ⊗. For example, in categories of executable programs, a monoidal
signature [6] specifies a domain-specific programming language.

Definition 1 (Monoidal signature in an SMC). Given a symmetric
monoidal category (SMC) C with the objects denoted by Ob(C), a monoidal sig-
nature1 S = (O,M) in that SMC consists of

– A finite set O ⊆ Ob(C); and
– A finite set M consisting of elements m : C(τ1, τ2) for some τ1, τ2 ∈ O, such

that ∀τ ∈ O,m �= idτ .

The following free operad over a monoidal signature represents the space of
all possible programs synthesized from the above building blocks (generators
specified by the monoidal signature). Employing an operad rather than just
a category allows us to reason about composition as nesting rather than just
transitive combination; employing an operad rather than just a grammar allows
us to reason about both the inputs and outputs of operations rather than just
their outputs.

Definition 2 (Free operad over a signature). The free operad OS over a
signature S = (O,M) consists of

– A set of types (representations) Ty(OS) = {I} ∪ O⊗;
– For every n ∈ N

+ a set of operations (mappings) OS(τ0, . . . , τn−1; τn) con-
sisting of all trees with finitely many branches and leaves, in which each vertex
v with n−1 children is labeled by a generator m(v) ∈ M such that dom(m(v))
has product length n − 1;

– An identity operation idτ : OS(τ; τ) for every τ ∈ Ty(OS); and
– A substitution operator ◦i defined by nesting a syntax tree OS(σ1, . . . ,σm; τi)

inside another OS(τ1, . . . , τn−1; τn) when i ∈ [1...n − 1] to produce a syntax
tree OS(τ1, . . . , τi−1,σ1, . . . ,σm, τi+1, . . . τn−1; τn).

Intuitively, free operads share a lot in common with context-free grammars,
and in fact Hermida [10] proved that they share a representation as directed
acyclic hypergraphs. The definition of a signature in an SMC already hints at
the structure of the appropriate hypergraph, but Algorithm 1 will make it explicit
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Input: signature S = (O, M)
Output: hypergraph H = (V, E), recursion sites R
V ← O;
E ← map(λm.(dom(m), cod(m)), M );
R ← ∅;
stack ← {v ∈ V | |v| > 1};
while stack �= ∅ do

ty ← pop(stack);
inhabitants ← map(λc.{(dom(e), c) | e ∈ E, cod(e) = c}, chunks(ty, V ));
foreach ((d1, c1), . . . , (dk, ck)) ∈ ⊗

inhabitants do
if not sublist(

⊗
i∈[1..k] di, ty) then

R ← R ∪ {⊗[(d1, c1), . . . , (dk, ck)]}
E ← E ∪ {(

⊗
i∈[1..k] di,

⊗
i∈[1...k] ci)};

if d /∈ V then
push(stack, d);
V ← V ∪ {⊗

i∈[1..k] di};

end

end

end

end
return (V, E), R

Algorithm 1: Algorithm to represent a free operad as a hypergraph. The
function chunks partitions ty into sublists, each an element of the set V .

and add edges to the hypergraph corresponding to nesting separate operations
in parallel (or equivalently, to monoidal products in the original SMC). In the
hypergraph produced by Algorithm 1, each vertex corresponds to a non-product
type and each hyperedge has a list of vertices as its domain and codomain.
Each such hypergraph admits a representation as a graph as well, in which the
hyperedges serve as nodes and the lists in their domains and codomains serve as
edges. We will use this graph representation G 	 H to reason about morphisms
as paths between their domain and codomain.

We will derive a probabilistic generative model over morphisms in the free
operad from this graph representation’s directed adjacency matrix AG.

Definition 3 (Transition distance in a directed graph). The “transition
distance” between two indexed vertices vi, vj is the negative logarithm of the i, j
entry in the exponentiated adjacency/transition matrix

d(vi, vj) = − log
([

eAG
]
i,j

)
, (1)

where the matrix exponential is defined by the series

eAG =
∞∑

n=1

(AG)n

n!
.

1 Also called a “hypersignature”.
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Data: hypergraph (V, E)
function Path(τ−, τ+, β,w)

i ← 1;
τi ← τ−;
f ← idty−;
while τi �= τ+ do

ei ∼ π(e ∈ E | τi, τ+ β);
τi ← cod(ei);
f ← f � Generator(ei, β,w);
i ← i + 1;

end
return f

end
Algorithm 2: The Markov chain constructing paths between types

A soft-minimization distribution over this transition distance will, in expec-
tation and holding the indexed target vertex constant, define an probabilistic
generative model over paths through the hypergraph.

Definition 4 (Free operad prior). Consider a signature S = (O,M) and
its resulting graph representation G = (V,E) and recursion sites R, and then
condition upon a domain and codomain τ−, τ+ ∈ Ty(OS) represented by vertices
in the graph. The free operad prior assigns a probability density to all finite paths
e = (e1, e2, . . . , en) with dom(e) = τ− and cod(e) = τ+ by means of an absorbing
Markov chain. First the model samples a “precision” β and a set of “weights” w

β ∼ γ(1, 1) w ∼ Dirichlet
(
�1(|M |+|R|)

)
.

Then it samples a path (from the absorbing Markov chain in Algorithm 2) by
soft minimization (biased towards shorter paths by β) of the transition distance

π(e ∈ E | τ1, τ2;β) :=
exp

(
− 1

β d(cod(e), τ2)
)

∑
e′∈E:dom(e′)=τ1

exp
(
− 1

β d(cod(e′), τ2)
) . (2)

Equation 2 will induce a transition operator T which, by Theorem 2.5.3 in
Latouche and Ramaswami [16], will almost-surely reach its absorbing state corre-
sponding to τ2. This path can then be filled in according to Algorithm 3. The pre-
cision β increases at each recursion to terminate with shorter paths. We denote
the induced joint distribution as

p(f,w, β; τ−, τ+) = p(f | β,w; τ−, τ+)p(w)p(β). (3)

Having a probabilistic generative model over operations in the free operad
over a signature, we now need a way to specify a structure learning problem.
Definition 5 provides this by specifying what paths to sample (each box specifies
a call to Algorithm 2) and how to compose them.
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Data: hypergraph (V, E), generators M , recursion sites R
function Generator(e, β,w)

gs ← {m ∈ M | (dom(m), cod(m)) = (dom(e), cod(e))};
gs ← gs ∪ {⊗[(d1, c1), . . . , (dk, ck)] ∈ R | ⊗

i∈[1...k] di =

dom(e) ∧ ⊗
i∈[1...k] ci = cod(e)};

foreach j ∈ {1, . . . , |gs|} do
if gsj = ⊗(. . .) then

wj ← wj/β;
end

end
we ← [wn | g ∈ gs, g ∈ M, n = index(g, M)];
we ← we + [w|M|+n | g ∈ gs, g ∈ R, n = index(g, R)];
j ∼ Discrete(we);
if gsj = ⊗[(d1, c1), . . . , (dk, ck)] then

return
⊗k

l=1 Path(dl, cl, β + 1,w)

else
return gsj

end

end
Algorithm 3: Filling in an edge in the path with a morphism

Definition 5 (Wiring diagram). An acyclic, O-typed wiring diagram [7,
22] is a map from a series of internal boxes, each one defined by its domain
and codomain pair (τ−

i , τ+
i ) to an outer box defined by domain and codomain

(τ−
n , τ+

n )

Φ : OS(τ−
1 , τ+

1 ) × . . . × OS(τ−
n−1, τ

+
n−1) → OS(τ−

n , τ+
n ).

Acyclicity requires that connections (“wires”) can extend only from the outer
box’s domain to the domains of inner boxes, from the inner boxes codomains
to the outer box’s codomain, and between internal boxes such that no cycles are
formed in the directed graph of connections between inner boxes.

Given a user-specified wiring diagram Φ, we can then wite the complete prior
distribution over all latent variables in our generative model.

p(f,w, β;Φ,S) = p(β)p(w)
∏

(τ −
i ,τ +

i )∈Φ

p(fi | β,w; τ−
i , τ+

i ). (4)

If a user provides a likelihood pθ (x, z | f) relating the learned structure f to
data x (via latents z) we will have a joint density

p(x, z, f,w, β;Φ,S) = p(x | f)p(f,w, β;Φ,S), (5)

and Eq. 5 then admits inference from the data x by Bayesian inversion

p(z, f,w, β | x;Φ,S) = p(x, z, f,w, β;Φ,S)
pθ (x;Φ,S) . (6)
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Section 2.1 will explain how to approximate Eq. 6 by stochastic gradient-based
optimization, yielding a maximum-likelihood estimate of θ and an optimal
approximation for the parametric family φ to the true Bayesian inverse.

2.1 Model Learning and Variational Bayesian Inference

Bayesian inversion relies on evaluating the model evidence pθ (x;Φ,S), which
typically has no closed form solution. However, we can transform the high-
dimensional integral over the joint density into an expectation

pθ (x;Φ,S) =
∫

pθ (x, z, fθ ,w, β;Φ,S)dz dfθ dw dβ

= Ep(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] ,
and then rewrite that expectation into one over the proposal

Ep(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] =

Eqφ (z,fθ ,w,β|x;Φ,S)

[
pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
.

For constructing this expectation, DisCoPyro provides both the functorial inver-
sion described in Sect. 3.1 and an amortized form of Automatic Structured Vari-
ational Inference [1] suitable for any universal probabilistic program.

Jensen’s Inequality says that expectation of the log density ratio will lower-
bound the log expected density ratio

Eqφ (z,fθ ,w,β|x;Φ,S)

[
log

pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
≤

logEp(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] ,
so that the left-hand side provides a lower bound to the true model evidence

L(θ,φ) = Eqφ (z,fθ ,w,β|x;Φ,S)

[
log

pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
≤ log pθ (x;Φ,S).

Maximizing this evidence lower bound (ELBO) by Monte Carlo estimation of its
values and gradients (using Pyro’s built-in gradient estimators) will estimate the
model parameters θ by maximum likelihood and train the proposal parameters
φ to approximate the Bayesian inverse (Eq. 6) [12].

3 Example Application and Training

The framework of connecting a morphism to data via a likelihood with inter-
mediate latent random variables allows for a broad variety of applications. This
section will demonstrate the resulting capabilities of the DisCoPyro framework.
Section 3.1 will describe an example application of the framework to deep proba-
bilistic program learning for generative modeling. Section 3.2 that describe appli-
cation’s performance as a generative model.



Computing with Categories in Machine Learning 251

Table 1. Average log-evidence on the Omniglot evaluation set across models. Our free
operad model obtains the highest higher log-evidence per data dimension.

Model Image Size Learns Structure log-Ẑ/dim

Sequential Attention [19] 28 × 28 ✗ −0.1218

Variational Homoencoder [11] (PixelCNN) 28 × 28 ✗ −0.0780

Graph VAE [9] 28 × 28 ✓ −0.1334

Generative Neurosymbolic [5] 105 × 105 ✓ −0.0348

Free Operad DGM (ours) 28 × 28 ✓ −0.0148

3.1 Deep Probabilistic Program Learning with DisCoPyro

As a demonstrative experiment, we constructed an operad O whose generators
implemented Pyro building blocks for deep generative models fθ (taken from
work on structured variational autoencoders [12,19,24]) with parameters θ. We
then specified the one-box wiring diagram Φ : (I,R28×28) → (I,R28×28) to
parameterize the DisCoPyro generative model. We trained the resulting free
operad model on MNIST just to check if it worked, and on the downsampled
(28 × 28) Omniglot dataset for few-shot learning [14] as a challenge. Since the
data x ∈ R

28×28, our experimental setup induces the joint likelihood

pθ (x | z, fθ ) = N (μθ (z, fθ ), Iτ )
pθ (x, z | fθ ) = pθ (x | z, fθ )pθ (z | fθ ).

DisCoPyro provides amortized variational inference over its own random vari-
ables via neural proposals qφ for the “confidence” β ∼ qφ(β | x) and the “prefer-
ences” over generators w ∼ qφ(w | x). Running the core DisCoPyro generative
model over structures fθ then gives a proposal over morphisms in the free operad,
providing a generic proposal for DisCoPyro’s latent variables

qφ(fθ ,w, β | x;Φ,S) = p(fθ | w, β;Φ,S)qφ(β | x)qφ(w | x).

Since the morphisms in our example application are components of deep gener-
ative models, each generating morphism can be simply “flipped on its head” to
get a corresponding neural network design for a proposal. We specify that pro-
posal as qφ(z | x, fθ ); it constructs a faithful inverse [23] compositionally via a
dagger functor (for further description of Bayesian inversion as a dagger functor,
please see Fritz [8]). Our application then has a complete proposal density

qφ(z, fθ ,w, β | x;Φ,S) = qφ(z | fθ ,x)qφ(fθ ,w, β | x;Φ,S). (7)

3.2 Experimental Results and Performance Comparison

Table 1 compares our free operad model’s performance to other structured deep
generative models. We report the estimated log model evidence. Our free operad
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(a) Omniglot characters (above) and
their reconstructions (below)

(b) A string diagram sampled from the
free operad model’s Bayesian inverse.

Fig. 2. Reconstructions (left) generated by inference in the diagrammatic generative
model (right) on handwritten characters in the Omniglot evaluation set. The string
diagram shows a model that generates a glimpse, decodes it into an image canvas via
a variational ladder decoder, and then performs a simpler process to generate another
glimpse and insert it into the canvas.

prior over deep generative models achieves the best log-evidence per data dimen-
sion, although standard deviations for the baselines do not appear to be available
for comparison. Some of the older baselines, such as the sequential attention
model and the variational homoencoder, fix a composition structure ahead of
time instead of learning it from data as we do. Figure 2 shows samples from
the trained model’s posterior distribution, including reconstruction of evalua-
tion data (Fig. 2a) and an example structure for that data (Fig. 2b).

Historically, Lake [14] proposed the Omniglot dataset to challenge the
machine learning community to achieve human-like concept learning by learn-
ing a single generative model from very few examples; the Omniglot challenge
requires that a model be usable for classification, latent feature recognition, con-
cept generation from a type, and exemplar generation of a concept. The deep
generative models research community has focused on producing models capa-
ble of few-shot reconstruction of unseen characters. [11,19] fixed as constant the
model architecture, attempting to account for the compositional structure in
the data with static dimensionality. In contrast, [5,9] performed joint structure
learning, latent variable inference, and data reconstruction as we did.

4 Discussion

This paper described the DisCoPyro system for generative Bayesian structure
learning, along with its variational inference training procedures and an example
application. Section 2 described DisCoPyro’s mathematical foundations in cate-
gory theory, operad theory, and variational Bayesian inference. Section 3 showed
DisCoPyro to be competitive against other models on a challenge dataset.

As Lake [15] suggested, (deep) probabilistic programs can model human
intelligence across more domains than handwritten characters. Beyond pro-
grams, neural network architectures, or triangulable manifolds, investigators
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have applied operads and SMCs to chemical reaction networks, natural lan-
guage processing, and the systematicity of human intelligence [3,18]. This broad
variety of applications motivates our interest in representing the problems a gen-
erally intelligent agent must solve in terms of operadic structures, and learning
those structures jointly with their contents from data.
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