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Abstract. Active inference offers a principled account of behavior as
minimizing average sensory surprise over time. Applications of active
inference to control problems have heretofore tended to focus on finite-
horizon or discounted-surprise problems, despite deriving from the
infinite-horizon, average-surprise imperative of the free-energy principle.
Here we derive an infinite-horizon, average-surprise formulation of active
inference from optimal control principles. Our formulation returns to the
roots of active inference in neuroanatomy and neurophysiology, formally
reconnecting active inference to optimal feedback control. Our formula-
tion provides a unified objective functional for sensorimotor control and
allows for reference states to vary over time.

Keywords: Hierarchical control · Path-integral control · Infinite-time
average-cost

1 Introduction

Adaptive action requires the integration and close coordination of sensory with
motor signals in the nervous system. Active inference [17] provides one of the few
available unifying theories of sensorimotor control; it says that the nervous sys-
tem encodes both sensory and motor signals as afferent predictions and reafferent
prediction errors. Sensory predictions induce errors that can only be quashed by
updating the predictions, while motoric predictions induce errors that can be
quashed by simply moving the body to conform to the predicted trajectory [1].
The free energy principle, following the logic of active inference, says that organ-
isms maintain their self-organization as a whole over time by avoiding surprising
interactions between their internal and external environments [16]. This entails
maintaining bodily states within homeostatic ranges [41] by issuing sensory, pro-
prioceptive, and interoceptive predictions that minimize errors under a “prior
preference” [11] or “non-equilibrium steady-state” [19] density. Such a density
must be stationary throughout time.
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Early “non-equilibrium steady-state” formulations of active inference pro-
vided probability densities over full trajectories of movement and interaction
[19,20]. In regulatory terms, this corresponds to covariation of bodily states
under a “just enough, just in time” [54] mode of regulation that physiologists
have labelled homeostasis [8] with time-varying set points, rheostasis [36], and
recently allostasis [10,48,54,60]. A control theorist would call these trajecto-
ries or set-points a reference trajectory or “reference signal” that a controller
tries to track. However, many more recent formulations of active inference use
state-space models with fixed “prior preferences” that correspond to homeostatic
set-points or ranges [11]. They also typically employ either finite time horizons
or exponential discounting of expected free energy, unlike the original formula-
tion of active inference in terms of average surprise over time. A control theorist
would refer to these as reference states rather than reference trajectories.

This paper will rederive active inference as minimization of path-entropy
over an infinite time horizon. The paper’s formulation will derive from the first
principles of infinite-horizon, average-cost optimal control; will allow preferences
to vary according to their own generative model, and will unify motor active
inference [1] (mAI) with decision active inference [52] (dAI). This will also unify
the computational principles behind motor active inference - the “equilibrium
point” [14,29] or “reference configuration” [15] hypotheses - with the higher-
level study of sensorimotor behavior as optimal feedback control. Finally, the
paper’s formalism will provide a unified free energy functional for perception,
motor action, and decision making over time.

Section 2 will explain this paper’s notation and lay out an example gener-
ative model supporting the necessary features for the intended formulation of
active inference. Section 3 will summarize belief updating in generative mod-
els, give a recognition model to match the generative model, describe the free
energy principle for perceptual inference, and finish by describing active infer-
ence. Section 4 will then extend active inference to the setting of an explicit
reference model prescribing behavior and give the control criterion correspond-
ing to active inference under the free energy principle. Section 5 will derive the
resulting free energy bounds whose optimization will yield a Bellman-optimal
feedback controller based on the generative and recognition models. Section 6
will discuss related work; consider implementation issues for infinite-horizon,
average-cost active inference; and conclude. Appendix A will provide derivations
for equations that would otherwise have broken the flow of the paper.

2 Preliminaries and Notation

This paper will explain its formulation of active inference in terms of the discrete-
time graphical model in Fig. 1. Like many generative models used to lay out
active inference [27,42], this model employs a hierarchy of temporal scales. We
number these timescales from the shortest to the longest, while numbering ran-
dom variables with discrete timesteps t ∈ 1 . . . T from left to right. For simplicity,
we also restrict our graphical model to only three levels of hierarchy: observable
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Fig. 1. A hierarchical generative model we use as an example in this paper. Two
variables (s

(1)
t , s

(2)
t ) denote unobserved latent states, and each a

(k+1)
t parameterizes a

reference model for s
(k)
t . ot represents observed sensory outcomes, and at represents

the feedback control actions generated by motor reflex-arcs.

variables, fast latent variables, and slow random variables. Following those rules,
observations ot and feedback motor actions at are 1-Markov; they “tick” at every
time-step. The fast latent variables s

(1)
t and a

(1)
t also change at every time-step.

At the next level up, slow latent variables s
(2)
t and a

(2)
t are 2-Markov; they

“tick” every second time-step t + 2. We assume arbitrary state spaces for all
random variables, latent and observed, without any discrete or linear-Gaussian
assumptions about their conditional densities. Some evidence suggests [24] that
the brain may in fact represent time by learning a combination of frequencies in
the Laplace domain [51], and so the use of only three levels in the model should
not be taken to describe anything biological.

We write the combined latent states

s
(1:2)
t = (s(1)t , s

(2)
t )

and the “actions” or reference states

a
(0:2)
t = (at, a

(1)
t , a

(2)
t ).

We can therefore write the complete state at a time-step t as

st = (ot, s
(1:2)
t , a

(0:2)
t ).

We will denote probability densities over actions as policies π and probability
densities in the generative model as pθ (with arbitrary parameters θ). The lowest
level of conditional probability densities then consists of

pθ(at, ot | a
(1)
t , s

(1)
t ) = π(at | ot, a

(1)
t )pθ(ot | a

(1)
t , s

(1)
t ),
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the fast latent state level consists of

pθ(a
(1)
t , s

(1)
t | s

(1)
t−1, a

(2)
t , s

(2)
t , at−1) = π(a(1)

t | s
(1)
t , a

(2)
t )pθ(s

(1)
t | s

(1)
t−1, s

(2)
t , at−1),

and the slow latent state level consists of

pθ(a
(2)
t , s

(2)
t | s

(2)
t−1, at−1) = π(a(2)

t | s
(2)
t )pθ(s

(2)
t | s

(2)
t−1, at−1).

We write the complete state of the generative model pθ at a time-step t with its
associated conditional densities as

pθ(st | st−1) = pθ(at, ot | a
(1)
t , s

(1)
t )pθ(a

(1)
t , s

(1)
t | s

(1)
t−1, a

(2)
t , s

(2)
t , at−1)

pθ(a
(2)
t , s

(2)
t | s

(2)
t−1, at−1), (1)

and the joint density over time (conditioned on a fixed initial state s0) as

pθ(s1:T | s0) =
T∏

t=1

pθ(st | st−1). (2)

The model treats outcomes ot as observed, at as a feedback-driven motor action,
and other variables as latent. Inspired by the referent configuration account of
motor control [15,30], the model treats a

(1:2)
t as parameterizing “prior prefer-

ences” or referent configurations

R(st) = R(ot | a
(1)
t )R(s(1)t | a

(2)
t ). (3)

at models the feedback control action of motor reflexes. a
(1)
t parameterizes a ref-

erence state for ot. a
(2)
t parameterizes a reference model for s

(1)
t . Since reference

trajectories direct action, we consider their distributions to be policies

π(at, a
(1:2)
t | ot, s

(1:2)
t ) = π(at | a

(1)
t , ot)π(a(1)

t | s
(1)
t , a

(2)
t )π(a(2)

t | s
(2)
t ). (4)

s
(2)
t , as the highest level latent state, has no reference model. In neuroscience,

it might correspond to predictive modeling at the highest level of the neuraxis
or cortical hierarchy [3,31,44]. In an engineering setting, it might contain both
environment and task state [37,46,56] or reward machine [7,25] state.

The likelihood pθ(ot | a
(1)
t , s

(1)
t ) does not specify the reference model; it

instead provides the statistical grounding for both the latent states and the
reference model parameters. The model here does not assume that reference
densities at all levels are prespecified or learned, but instead leaves that issue
open.

We then designate as cost functions the surprisals over complete states (under
the reference model) and over observations (under the generative model)

J(st) = − log R(st), (5)

L(st) = − log pθ(ot | a
(1)
t , s

(1)
t ). (6)
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Table 1. Random variable names used in this paper

pθ Probability density for the generative model

qφ Probability density for the recognition model

R Probability density for the reference model

π Policy density over actions and references

t Discrete time-step index

ot Observations

s
(1:2)
t Unobserved model states

a
(1:2)
t Parameters to a reference model R

at Control actions

st A complete model state for time t

Eq. 5 equals the negative of the reward function used in distribution-conditioned
reinforcement learning [38] and can represent any control objective.

This paper will condition behavioral trajectories upon an initial state s0 as
context. This initial state corresponds to the beginning of a behavioral episode.
The following states from time 1 until time T , sampled from a generative model
with parameters θ, are then written as sampled from the joint density

s1:T ∼ pθ(s1:T | s0).
This section has described a generative model and a decision objective under
which to formulate active inference. Table 1 summarizes the notation the rest
of the paper will use. The next section will lay out belief updating for the gen-
erative model, a recognition model to represent updated beliefs, and the free
energy principle for perceptual inference. Later sections will show how to extend
free-energy minimization to approximate a feedforward planner (in the gener-
ative model) and feedback controller (in the recognition model) that minimize
surprisal under the reference model.

3 Surprise Minimization and the Free Energy Principle

Section 2 gave a generative model and a way of writing arbitrary preferences as
probability densities. However, the formalism constructed so far would induce a
merely feedforward model-based planner, one which could not correct upcoming
movements in light of observations. Bayes’ rule specifies how to update proba-
bilistic beliefs about unobserved variables in light of observations:

pθ(s
(1:2)
1:t , a

(1:2)
1:t | o1:t, s0) =

pθ(o1:t, s
(1:2)
1:t , a

(1:2)
1:t | s0)

pθ(o1:t | s0) . (7)

The denominator of Eq. 7 is called the marginal likelihood, and its negative
logarithm is the surprise under the generative model

h(o1:t) = − log pθ(o1:t | s0).
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Friston’s free energy principle [21] posits that a system, organism, or agent in a
changing environment preserves its structure against the randomness of its envi-
ronment by embodying a generative model of its environment and minimizing
that model’s long-term average surprise

H(ot) = lim
T→∞

1
T

− log pθ(o1:T | s0). (8)

In most generative models, neither the denominator of Eq. 7 nor the surprise of
Eq. 8 are analytically tractable, and Bayesian inference requires approximation.
Active inference in particular approximates optimal belief updating by substi-
tuting a tractable recognition model qφ (with parameters φ) for the posterior
distribution

s
(1:2)
1:T , a

(1:2)
1:T ∼ qφ(s(1:2)1:T , a

(1:2)
1:T | o1:T , a1:T , s0),

qφ(s(1:2)1:T , a
(1:2)
1:T | o1:T , a1:T , s0) =

T∏

t=1

qφ(s(1:2)t , a
(1:2)
t | ot, at, st+1, st−1).

This recognition model is conditioned on both the previous time-step t − 1 and
the next time-step t + 1, and can therefore perform retroactive belief updates.

To improve the recognition model’s approximation to the posterior distri-
bution, active inference entails evaluating and minimizing the variational free
energy (Eq. 9, derivation in Proposition 1 in Appendix A)

Fθ,φ(t) = Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
+

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
. (9)

The free energy serves as a tractable upper bound to the surprise

H(ot) ≤ Fθ,φ(t).

Intuitively, given an observation at each time-step t, minimizing the free energy
amounts to updating the beliefs of the recognition model qφ to approximate the
posterior distribution of the generative model pθ. A model-based controller can
then use those updated beliefs to revise or plan actions into the future. Active
inference has therefore often been formulated as using action to minimize this
free energy bound. Such a move then prompts the question of how to encode a
desirable reference trajectory into the generative model or another term of the
free energy bound [18]. The next section will define notions of surprise and free
energy that encode fit to an explicitly specified reference trajectory.

4 Active Inference with an Explicit Reference

Minimizing free energy fits a model-based controller’s generative and recognition
models to ongoing trajectories of observations. However, for the updated beliefs
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to determine action, the controller must use them to evaluate the fit to the ref-
erence trajectory (Eq. 5) and emit motor actions. Fortunately, Thijssen [58] gave
an interpretation of probabilistic updating in terms of control: the recognition
model qφ acts as a state-feedback controller, for which the variational free energy
becomes a running control cost. This section will show how to evaluate fit to the
reference trajectory under the recognition model, and specify the functional it
must optimize to serve as a feedback controller.

The generative model in Sect. 2 and recognition model in Sect. 3 use discrete
time-steps and explicitly specify the “pathwise” reference model separately from
the generative and recognition models. The surprise to minimize is therefore the
long run average of the cross-entropy

H(qφ, R) = lim
T→∞

1
T

T∑

t=1

Est∼qφ
[− log R(st)] . (10)

Equation 10 gives the long-term average surprise of using the reference model to
approximate the posterior beliefs of the recognition model. Replacing the refer-
ence model with the forward generative model would then amount to minimizing
the long-term average surprise (entropy); this generalization treats the reference
model as specifying a trajectory for the feedback controller to track.

Standard properties of free energy functionals imply that a desirable objective
functional would upper bound the sum of reference surprise and sensory surprise

H(R(st)) + H(ot) ≤ J (t). (11)

Such a free energy functional would balance the reference model’s surprise (the
first term) with the generative model’s surprise (the second term). In fact it can
be formed simply by adding Eq. 10 to Eq. 9

Jθ,φ(t) = H(qφ, R) + Fθ,φ(t) (12)
= Est∼qφ

[J(st)] + Fθ,φ(t), (13)

and expanding the term for Eq. 9 will yield a long-form expression

Jθ,φ(t) = Eqφ
[J(st)] + Eqφ

[L(st)] +

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
. (14)

Eq. 14 gives an objective functional in terms of

– The reference surprisal under the recognition model,
– The observation surprisal under the recognition model, and
– The deviation of the recognition model from the generative model.

Neuroscientists [12,50] and ecologists [53] have found evidence that animals
optimize a global capture rate J̄ in many decisions: rewards minus costs, divided
by time. Active inference modelers typically ground the construct of “reward”
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in reduction of surprise [35], and so a broad field of evidence comes together
to support the time-averaging functional form implied by Bayesian mechanics
in both their “steady-state density” and “pathwise” formulations [45]. The next
section will therefore apply the principles of stochastic optimal feedback con-
trol for the partially observed setting and average-cost criterion, and solve the
resulting control problem to formulate active inference.

5 Deriving Time-Averaged Active Inference
from Optimal Control

The average-cost criterion for optimality entails minimizing the indefinite sur-
prise rate with respect to the generative model pθ(s1:T | s0)

J̃ (s0) = lim
T→∞

Epθ(s1:T |s0)
[J̄θ,φ(s1:T )

]
. (15)

This minimization requires estimating Eq. 15 for each behavioral episode in con-
text, a “global surprise rate” in terms of Jθ,φ(t)

J̄θ,φ(s1:T ) =
1
T

T∑

t=1

Jθ,φ(t). (16)

Plugging Eq. 14 into Inequality 11 shows that minimizing Eq. 16 will, by proxy,
minimize the reference and sensory surprise in the context of a sampled state
trajectory s0:T . This estimation does not require a prespecified episode length
T , and can be performed under the generative model

J̄θ,φ(s0) = Es1:T ∼pθ(s1:T |s0)
[J̄θ,φ(s1:T )

]
. (17)

Having estimates of Eq. 17 will enable minimizing the mean-centered surprise at
each time-step

h(t; s0) = Jθ,φ(t) − J̄ (s0). (18)

The differential Bellman equation [59] defines optimal behavior as recursively
minimizing the mean-centered surprise at each time-step, or surprise-to-go

H̃∗(t; s0) = h(t; s0) + min
at

Est+1∼pθ(·|st)

[
H̃∗(t + 1; s0)

]
. (19)

The minimization over actions in Eq. 19 assumes a fixed action space and feedfor-
ward planning, which may result in very high-dimensional recursive optimization
problems. These assumptions also prove empirically, as well as computationally,
problematic. Organisms are not born knowing all their affordances [9]; they learn
them [40]. Noise [13,32], uncertainty [23], and variability [47] are ubiquitous in
motor control, and so movement must be stabilized by online feedback.

Stochastic optimal feedback control therefore requires an optimality princi-
ple that allows for integrating observations between action steps. Rather than
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recursively optimize individual actions, Eq. 20 below therefore instead considers
optimality of the feedback-stabilized transition density

H̃∗(t; s0) = h(t; s0) + min
qφ

Est+1∼qφ(·|st)

[
H̃∗(t + 1; s0)

]
. (20)

Equation 20 defines an optimal controller as one that achieves optimal state
transitions; individual actions act only as parameters to the optimal transition
density. These optimal state transitions take the form of a generative model
for agency, in which the generative model pθ(st+1 | st) produces feasible state
transitions and the Bellman optimality criterion “weighs” them according to
their surprise-to-go

q∗(st+1 | st) =
exp

(
−H̃∗(t + 1; s0)

)
pθ(st+1 | st)

Est+1∼pθ(·|st)

[
exp

(
−H̃∗(t + 1; s0)

)] . (21)

The denominator of Eq. 21 would typically correspond to the marginal probabil-
ity of an observation. Here it consists of the present state’s expected surprise-to-
go weight under the generative model. Potential future states that lead to high
surprise under the reference model will have high surprise-to-go and therefore
low weight under Eq. 21. Present states that lead to states closely fitting the ref-
erence trajectory will have low surprise-to-go, resulting in a high denominator
that spreads weight around among possible future states.

The availability of a closed-form density for the optimal transition density
will help simplify the differential Bellman equation itself. Proposition 3 (in
Appendix A) shows that by substituting Eq. 21 into Eq. 20 we can obtain a
path-integral expression for the optimal differential surprise-to-go with both the
feedforward controller pθ

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
, (22)

and the feedback controller qφ

H̃∗(s0) = − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
. (23)

These equations employ “smooth” minimization rather than “hard” recursive
minimization, and so they support feedforward planning, feedback-driven updat-
ing, and sensitivity of behavior to risk [39,57]. Jensen’s inequality will then yield
a tractable upper bound on the optimal differential surprise-to-go under the
feedback controller qφ

H̃∗(s0) ≤ −Eqφ(s1:T |s0)

[
T∑

t=1

h(t; s0)

]
= F̃∗

θ,φ. (24)

Minimizing this differential free energy F̃∗
θ,φ minimizes both the sensory sur-

prise and the optimal surprise-to-go function by proxy. This kind of information-
theoretic upper bound on a surprisal term is precisely what predictive coding
process theories [4,6] posit that the brain can optimize by updating θ and φ.
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6 Discussion

Related work. Our formulation follows in a tradition of unifying active inference
with optimal control approaches. Our hierarchical graphical model follows most
closely from the one featured by Friston [22] and Pezzulo [42] for hierarchical
active inference in decision making and motor control. In contrast to theirs, our
model includes only a single observation at the lowest hierarchical level rather
than one observed variable per level.

We also draw inspiration from information-theoretic control schemes not
labelled by their authors as “active inference”. Piray and Daw [43] considered
a path-integral control approach to planning and reinforcement learning, which
they related to grid cells in the entorhinal cortex. Mitchell et al [34] modeled
motor learning as minimization of a free energy functional. Nasriany et al’s
work on distribution-conditioned reinforcement learning gave us our scheme for
parameterizing reference distributions [38], and Sennesh et al [49] applied such an
objective to active inference modeling of interoception and allostatic regulation.

Implementations. We employed the infinite-horizon, average-surprise criterion to
fit with the apparent time-averaging of dopamine signals in the brain [12,50], but
algorithms for this control criterion remain an active research area with no stan-
dard approach. A recent survey [28] showed that most software implementations
of active inference models still involve either finite horizons or exponential dis-
counting criteria. Those which do support infinite horizons and nonlinear model
families mostly take algorithmic inspiration from reinforcement learning (RL).

In that domain, Tadepalli and Ok [55] published the first model-based RL
algorithm for our criterion in 1998, while Baxter and Bartlett [5] gave a biased
policy gradient estimator. It took another decade for Alexander and Brown [2]
to give a recursive decomposition for average-cost temporal-difference learn-
ing. Zhang and Ross [61] have only recently published the first adaptation of
“deep” reinforcement learning algorithms (based on function approximation)
to the average-cost criterion, which remains model free. Jafarnia-Jahromi et
al [26] recently gave the first algorithm for infinite-horizon, average-cost partially
observable problems with a known observation density and unknown dynamics.

Conclusion. This concludes the derivation of an infinite-horizon, average-surprise
formulation of active inference. Since our formulation contextualizes behav-
ioral episodes, it only requires planning and adjusting behavior in context
(e.g. from timesteps 1 to T ), despite optimizing a “global” (indefinite) surprise
rate (Eq. 15). We suggest that this formulation of active inference can advance
a probabilistic approach to model-based, hierarchical feedback control [33,40].

A Detailed Derivations

This appendix provides detailed derivations for equations used elsewhere, par-
ticularly where doing so would have distracted from the flow of the paper.
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Proposition 1 (Variational free energy as divergence from an unnor-
malized joint distribution). The variational free energy (Eq. 9) is defined as
the Kullback-Leibler divergence of the recognition model qφ from the unnormal-
ized joint distribution of the generative model pθ

Fθ,φ(t) = DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(st | st−1)

)
,

and therefore equals a sum of the cross entropy between the recognition model
and the sensory likelihood and the exclusive KL divergence from the recognition
model to the generative model over the latent variables

Fθ,φ(t) = Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
+

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
.

Proof. Taking a divergence between the (normalized) recognition model and the
(unnormalized) joint generative model will yield

Fθ,φ(t) = DKL

(
qφ(s

(1:2)
t , a

(1:2)
t | ot, st+1, st−1)‖pθ(st | st−1)

)

= E
qφ(s

(1:2)
t ,a

(1:2)
t |ot,st+1,st−1)

[
− log

pθ(st | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]

= E
qφ(s

(1:2)
t ,a

(1:2)
t |ot,st+1,st−1)

[
− log

pθ(ot | a
(1)
t , s

(1)
t )pθ(s

(1:2)
t , a

(1:2)
t | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]

= Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
− Eqφ

[
log

pθ(s
(1:2)
t , a

(1:2)
t | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]
,

as required.

Proposition 2 (KL divergence of the optimal feedback controller from
the feedforward controller). The exclusive Kullback-Leibler divergence of the
optimal feedback controller q∗ from the feedforward generative model pθ is

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) = −Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
−

logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
. (25)

Proof. We begin by writing out the definition of a KL divergence

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) = Eq∗(st+1|st)

[
− log

pθ(st+1 | st)
q∗(st+1 | st)

]
.
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The definition of q∗ in terms of pθ (Eq. 21) allows the inner ratio of densities to
simplify to

pθ(st+1 | st)
q∗(st+1 | st)

= pθ(st+1 | st) (q∗(st+1 | st))
−1

= ������pθ(st+1 | st)

⎛

⎝
Epθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

exp
(
−H̃∗(t + 1; s0)

)
������pθ(st+1 | st)

⎞

⎠

pθ(st+1 | st)
q∗(st+1 | st)

=
Epθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

exp
(
−H̃∗(t + 1; s0)

) .

This simplified ratio therefore has the logarithm

log
pθ(st+1 | st)
q∗(st+1 | st)

= logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
+ H̃∗(t + 1; s0)

and the divergence becomes

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) =

− Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
.

Proposition 3 (Path-integral expression for the optimal differential
surprise-to-go). The optimal differential surprise-to-go function defined by
the Bellman equation (Eq. 20)

H̃∗(t; s0) = h(t; s0) + min
qφ

Est+1∼qφ(·|st)

[
H̃∗(t + 1; s0)

]

can be simplified by substituting in q∗ to obtain a path-integral expression

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
,

= − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
.

Proof. Substituting Eq. 21 into Eq. 20 yields

H̃∗(t; s0) = J̄ (s0) − Jθ,φ(t) + Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
, (26)

whose recursive term is Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
. The divergence term in J

(Eq. 14) will cancel this term. By Proposition 2 the divergence equals

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) =

− Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
.
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Substituting Eq. 25 into Eq. 14 will yield

−Jθ,φ(t) = Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
+logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

+ Eqφ
[−J(st)] + Eqφ

[−L(st)] ,

whose first term will cancel the recursive optimization when substituted into
Eq. 26. The result will be a “smoothly minimizing” expression for the optimal
differential surprise-to-go

H̃∗(t; s0) = J̄ (s0) − (J(st) + L(st))

− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
,

and after unfolding of the recursive expectation, a path-integral expression for
the optimal differential surprise-to-go

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
.

Sampling a trajectory of states from a feedback controller qφ instead of the
feedforward planner pθ will then result in a nonzero divergence term

H̃∗(s0) = − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
.
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