
Structured Gotos are (Slightly) Harmful

Eli Sennesh
Technion

Technion City
Haifa, Israel

esennesh@cs.technion.ac.il

Yossi Gil
Technion

Technion City
Haifa, Israel

yogi@cs.technion.ac.il

ABSTRACT
We take up the questions of if and how “structured goto” state-
ments impact defect proneness, and of which what concept of size
yields a superior metric for defect prediction.

We count goto-like unstructured jumps, alongside method size
and compressed method size, as software engineering metrics, and
examine the evolution of 26 open-source code corpora in relation to
those metrics. We employ five different measures of defectiveness
and development effort. We measure the statistical quality of our
metrics as predictors of our defect measurements.

We show that the number of unstructured jumps is a predictor of
defects, routine maintenance and two other metrics of software de-
velopment effort. The correlation between unstructured jumps and
development effort is positive, and it remains so even after account-
ing for the effect of code size. We also show that the number of
unstructured jumps is superior to code size, both compressed and
uncompressed, in its predictive power of accumulated defects.

CCS Concepts
•Software and its engineering → Control structures; Software
evolution; Software defect analysis;

Keywords
software defect prediction, static code metrics, control-flow con-
structs

1. INTRODUCTION
Dijkstra advocated eliminating goto statements from code as early
as 1968 [4], holding that its usage

“has an immediate consequence that it becomes terri-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC 2016,April 04 - 08, 2016, Pisa, Italy

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3739-7/16/04…$15.00
DOI: http://dx.doi.org/10.1145/2851613.2851730

bly hard to find any meaningful set of coordinates in
which to describe the process progress.”

The case against goto usage is not limited to mere argumenta-
tion. goto increases a program’s cyclomatic complexity [9]. It
makes control-flow graphs irreducible [1], thereby complicating
static analysis and compiler-level optimization of the code. goto
statements are also formally unnecessary, as demonstrated by Böhm [3],
whose structured programming theorem shows how to take any
program using goto and construct an equivalent but structured
program without goto.

The primary advantage of goto over higher-level control-flow con-
structs is its simpler translation into single, unconditional branch
instructions, and thus its greater efficiency. Knuth [7] proposed
using goto for exactly this purpose, arguing that certain uses of
goto are in harmony with structured programming.

This argument by Knuth to allow goto in disguise seems to have
won out. While goto itself rarely appears in most modern code,
the constructs break, continue, return and throw routinely
do. These violate the fundamental principle of structured program-
ming: that every command, atomic or compound, has precisely one
entry point and (no more than) one exit point.

Consider the block of code in Listing 1, paraphrased from one
of these authors’ own codebases (but with trademarked names re-
moved and variable names changed). The seemingly-infinite loop
structure might make sense in, for instance, an autonomous worker-
thread that moves bytes in parallel to other processing, but in fact
this code forms part of a procedure for synchronously replaying old
network traffic. The pattern of setting retval and then issuing a
break command appears twice, but could have appeared in the
first if body as well.

Is this code correct? To the authors’ knowledge, it doesn’t have
an outstanding bug report at this time, but that’s no proof (we’ve
found bugs in code of similar age and frequency of usage). A quick
grep search shows that the while (1) control-flow trick ap-
pears at least twelve times in just a single revision of a single git
repository.

Following the drive ignited by [8] towards evidence-based language
design and software engineering, we take up whether and how “struc-
tured goto” statements impact defect proneness, and which con-
cept of size yields a superior metric for defect prediction. Rather
than harangue, our contribution is to treat these “structured goto”
statements as a metric and analyze empirically their correlation
with other empirical measures of defects.

1784

http://dx.doi.org/10.1145/2851613.2851730

while (1) {
nread = net_tape->read(fd, &hdr, sizeof(
hdr));

if (!nread)
break;

if (nread != sizeof(hdr)) {
net_error("net-tape: invalid byte count
read, aborting...\n");
retval = -EIO;
break;

}

nread = net_tape->read(fd, buffer, hdr.
size);

if (hdr.size != nread) {
net_error("net-tape: invalid byte count
read, aborting...\n");
retval = -EIO;
break;

}

net_rx_handler(hdr.cport, buffer, nread);
}

Listing 1: Unstructured jumps in industrial code

The advent of easier to parse languages such as Java, and the avail-
ability on the Internet of open-source repositories, along with their
history, made our study not only possible, but also feasible.

Contributions.
We here use the term unstructured jumps to denote jump instruc-
tions traversing more than one edge of the abstract-syntax tree, or
that leave blocks of code with more than one entry or exit point. An
intuitive way to think of these is as “hidden goto’s”. We investi-
gate their use in a dataset comprised of professionally-developed
software projects.

Our specific contributions are as follows:

1. We show that the number of unstructured jumps is a predic-
tor of defects, routine maintenance and two other metrics of
software development effort.

2. We show that the correlation between unstructured jumps
and development effort is positive.

3. We show that this correlation remains positive even after the
confounding variable of code size is factored out.

4. We find that the number of unstructured jumps is (minutely)
superior to code size in its correlation with code defects.

2. METRICS AND STATISTICS

2.1 Independent Variables: Code Metrics
We employed an unstructured-jump metric (USJ), a program-size
metric (NOT), and a compressed size metric (GZP). We also in-
cluded a control metric containing randomly-generated numbers

(MNK), which was expected to correlate significantly with defects
only at the alpha level (for example, 5% of the time when α =
0.05).

1. Unstructured Jumps (USJ): a count of all return state-
ments outside tail-position, all break and continue state-
ments within loops, all infix Boolean operators with short-
circuit evaluation, and all throw statements found within
each method.

2. Number of Tokens (NOT): The number of tokens in each method,
representing method size. This metric was preferred over the
more traditional lines of code (LOC) for being robust to for-
matting conventions and the presence of comments.

3. GZIP (GZP): The compressed size of each method, measured
in bytes of gzipped source code.

4. Monkey Metric (MNK): A randomly generated real number,
used for control and sanity check.

We employed the number of tokens (NOT) in a method as our length
metric rather than the number of lines of code it contains due to the
greater robustness of tokens over lines against different coding and
formatting styles.

It is a commonly held view, though mostly falsified by [5], that
the single strongest predictor of defect proneness is a function’s
length. On this basis, we also normalized our metric values in three
different ways to remove the effect of method length upon them:

1. Size Normalization: metric values for a method are divided
by the method-length metric (NOT) value at that method and
revision

2. Rank Normalization: metric values for each method at each
revision are transformed into ranks, and each metric-value
rank is divided by the corresponding method-length metric
(NOT) rank for the same method and revision

3. Compressed Size Normalization: metric values for a method
are divided by the compress-size metric (GZP) value at that
method and revision

2.2 Dependent Variables: Metrics for Devel-
opment Effort

Unfortunately, the overwhelming majority of available software
corpora do not include bug-tracking data, and actually existing bug
reporting is not always accurate. We therefore employed five dif-
ferent measurements for development effort, relying on their con-
sensus to satisfactorily approximate real defect rates.

The analysis was method-based (rather than file-, or class-based).

1. Defect Proneness: whether or not a revision under exam-
ination had a commit message matching a regular expres-
sion which searches for words such as “fix” and “bug” case-
insensitively, as well as numbers preceded by #-signs (to de-
note bug-report numbers). Proneness provides a direct way
of measuring the presence of defects, even if it always under-
counts relative to human assessments of defect presence [6].

1785

2. Defects: the accumulated number of times a revision under
examination had a commit message matching a regular ex-
pression which searches for words such as “fix” and “bug”
case-insensitively, as well as numbers preceded by #-signs
(to denote bug-report numbers). Defects provides a direct
way of measuring the quantity of defects, even if it must nec-
essarily undercount.

3. Versions: the accumulated number of times a method’s source
code was changed. Versions provides a measurement of how
often development effort had to be expended on a method.

4. Churn: the accumulated lines of code changed in a method’s
source code, inspired directly by the work of [10], in which
relative churn was found to be a good predictor of defects.
Churn also measures how much development effort had to
be expended on a method.

5. Maintenance: the accumulated lines of code changed in de-
fective revisions, effectively a relative-churn metric for only
those methods with boolean-true defect Proneness. Similarly
to Proneness and Defects, Maintenance necessarily under-
counts defect presence.

These measures of software evolution are computable directly from
git logs, and therefore represent phenomena which were visible
to the programmers who ordered the commits in the first place.
By comparing defect measures in relation to metrics, we approxi-
mate the relationship between those metrics and the true defect rate,
despite the lack of reliable direct defect reports. The Churn mea-
surement in particular was inspired directly by the work of Nagap-
pan [10], in which relative churn was found to be a good predictor
of defects.

Take note that as usual in statistical studies of an existing popula-
tion, these variables are not strictly independent, e.g., code size is
obviously driven by factors such as development culture, individ-
ual style, etc. In addition, defect rates detected or predicted stati-
cally, using metrics, have been found to underestimate real defect
rates [6].

2.3 Distribution of Code Metrics

Table 1: p-values from the Kolmogorov-Smirnov test of unifor-
mity for metric values

USJ NOT GZP MNK

p ≥ 0.05 0 0 0 26
p < 0.05 0 0 0 0
p < 0.01 0 0 0 0
p < 0.001 26 26 26 0

We applied our code metrics to individual methods rather than to
whole JAVA [?] source files. [2] previously observed that metric
values tend to be distributed neither normally nor uniformly. We
confirmed this by performing the Kolmogorov-Smirnov test of uni-
formity on all metric values, of which the results are displayed in
Table 1. USJ, NOT, and GZP all reject the null hypothesis of uni-
formity in all corpora, with p < 0.001. The only metric which
does not reject the null hypothesis of uniformity is MNK, defined as
a real number uniformly sampled from the interval [0, 1].

3. EMPIRICAL FINDINGS

3.1 Preliminary χ2 Tests
We performed a χ2 test of independence to see the likelihood that
defect Proneness is conditionally independent from all our code
metrics, displaying the results in Table 2.

Table 2: p-values for the χ2 test of independence between meth-
ods with defect Proneness of 1 and methods with defect Prone-
ness of 0

USJ NOT GZP MNK

p ≥ 0.05 0 3 1 23
p < 0.05 0 1 1 2
p < 0.01 0 0 0 1
p < 0.001 26 22 24 0

Under the χ2 test’s null hypothesis, defect Proneness and code met-
rics have no relation, and defect-prone methods should thus exhibit
the same distributions of metric values as non-defective methods.
If we reject the null hypothesis, the alternative is that defective and
nondefective methods have significantly different distributions of
metric values.

The table shows the following. Defect Proneness in all corpora
presents a very strong significant relationship with USJ. 22 showed
very strong significance (and 1 regular significance) against NOT,
and 24 showed very strong significance (and 1 regular significance)
against GZP. As expected for p < 0.05, two out of the 26 corpora
(7.7%) showed a significant relationship with the random MNKmet-
ric. Most of the relationships we found were extremely strong, with
p < 0.001 being the mode likelihood of the null hypothesis.

3.2 Predictive power of code metrics
Kendall’s τb is a rank-correlation coefficient that measures the simi-
larity of ordering between two random variables. In paired samples
of the form (xi, yi) from two random variables, samples are con-
cordant when xi ≤ xj and yi ≤ yj , discordant when xi ≤ xj but
yj ≤ yi, and neither otherwise. The τb coefficient is then defined
by subtracting the number of discordant pairs from the number of
concordant pairs and dividing by a normalization constant to bring
the result between -1 and +1. The τb coefficient’s distribution has
an expected-value of 0, and becomes approximately normal (with
mean of 0, again) with large sample sizes. Since our sample size
is in the thousands, we employed the normal approximation to per-
form a hypothesis test for significant deviation from the null hy-
pothesis of no rank-correlation.

Each of our τb tables lists corpora as its rows and metrics as its
columns, giving per-metric mean τb values at the bottom to tell
us how well the metric predicted the matching measurement (of
code defects or development effort) on average. The values range
from -1.0 for deterministic anticorrelation to 1.0 for deterministic
correlation.

3.2.1 Metrics predicting Defects
Table 3 and Table 4 show the results of measuring Kendall’s τb be-
tween metrics and Defects under no normalization and size-normalization.

USJ best predicted Defects, but only very slightly compared to
NOT. The vast majority of the correlations were statistically signif-

1786

Table 3: Predictability of Defects from unnormalized metric
values, measured by Kendall’s τb. Values range between -1.0
and 1.0.

ID USJ NOT GZP MNK

A 0.2279** 0.2520** 0.2617** 0.0001
B 0.2041** 0.1888** 0.1700** 0.0023
C 0.0681** 0.1022** 0.1202** −0.0073
D 0.0991** 0.0626** 0.0744** −0.0004
E 0.1799** 0.1998** 0.1949** −0.0006
F 0.3270** 0.3999** 0.4065** 0.0025
G 0.0487** 0.0183** 0.0134** −0.0018
H 0.1124** 0.0768** 0.0633** −0.0017
I 0.1044** 0.1047** 0.0997** 0.0006
J 0.0660** 0.0525** 0.0438** 0.0024
K 0.0928** 0.1128** 0.1128** 0.0067*

L 0.1859** 0.1590** 0.1436** −0.0001
M 0.0302** 0.0042 −0.0566** 0.0031
N 0.1768** 0.0698** 0.0059 0.0055
O 0.1416** 0.0919** 0.1248** 0.0077
P 0.0531** 0.0278** 0.0419** −0.0051
Q 0.1706** 0.2774** 0.2556** 0.0002
R 0.1421** 0.1800** 0.1583** −0.0099
S 0.1354** 0.0889** 0.1008** −0.0041
T 0.0826** 0.1781** 0.1793** 0.0001
U 0.1728** 0.1841** 0.1909** 0.0007
V 0.0521** −0.0913** −0.0168* 0.0041
W 0.0923** 0.0373** 0.0260** 0.0000
X 0.1143** 0.1742** 0.1690** −0.0070
Y 0.1997** 0.2468** 0.2438** −0.0043
Z 0.1140** 0.1899** 0.1912** 0.0026

Metric mean 0.1305 0.1303 0.1276 −0.0001

* p < 0.05
** p < 0.01

icant, with MNK showing a significant (p < 0.05) correlation only
once among all 26 corpora.

Size-normalizing the metrics added information to their values from
NOT, which explains their all maintaining or even gaining statisti-
cal significance, even MNK. USJ maintains a noticeable mean cor-
relation with Defects, while GZP and MNK had their information
content dominated by that of NOT and became anticorrelated with
Defects.

3.2.2 Metrics predicting Churn
Table 5 and Table 6 show the results of measuring Kendall’s τb be-
tween metrics and Churn under no normalization and size-normalization.

GZP most strongly predicted Churn, followed closely by NOT and
then, with a lower mean τb by nearly 0.10, USJ. All correlations
were significant in all corpora, except for those with MNK, for which
p < 0.05 was obtained only twice in 26 corpora.

Size-normalization once again resulted in USJ being the only met-
ric to hold on to positive correlation rather than becoming domi-
nated by NOT’s information content: USJ had a positive and sub-
stantial mean τb after size normalization while all other metrics
anticorrelated. Statistical significances were again maintained, and
added to MNK by the information content of the normalization.

3.2.3 Metrics predicting Maintenance
Table 7 and Table 8 show the results of measuring Kendall’s τb

Table 4: Predictability of Defects from size-normalized metric
values, measured by Kendall’s τb. Values range between -1.0
and 1.0.

Size USJ GZP MNK

A 0.1588** −0.1937** −0.2009**

B 0.1741** −0.1991** −0.1557**

C 0.0539** −0.0590** −0.0793**

D 0.0835** −0.0359** −0.0551**

E 0.1563** −0.1761** −0.1645**

F 0.1645** −0.3522** −0.3209**

G 0.0485** −0.0187** −0.0181**

H 0.1019** −0.0642** −0.0598**

I 0.0856** −0.0881** −0.0839**

J 0.0547** −0.0595** −0.0406**

K 0.0686** −0.0829** −0.0861**

L 0.1755** −0.1407** −0.1264**

M 0.0290** −0.1128** −0.0013
N 0.1740** −0.1684** −0.0518**

O 0.1254** −0.0200* −0.0701**

P 0.0484** 0.0047 −0.0247*

Q 0.1070** −0.2720** −0.2334**

R 0.0832** −0.1784** −0.1458**

S 0.1074** −0.0489** −0.0673**

T 0.0409** −0.1306** −0.1411**

U 0.1501** −0.1062** −0.1449**

V 0.0520** 0.0960** 0.0709**

W 0.0880** −0.0379** −0.0285**

X 0.0903** −0.1389** −0.1448**

Y 0.1608** −0.2054** −0.2012**

Z 0.0856** −0.1455** −0.1515**

Metric mean 0.1026 −0.1129 −0.1049

* p < 0.05
** p < 0.01

between metrics and Maintenance under no normalization and size-
normalization.

GZP showed the highest average correlation with Maintenance, fol-
lowed by NOT and USJ. USJ’s correlations were statistically sig-
nificant less often than those of NOT and GZP. None of the metrics
had a larger τb value with Maintenance than 0.10.

Size-normalization again found GZP and MNK to anticorrelate with
Maintenance, although USJ merely lost some statistical signifi-
cances while maintaining a low but positive correlation.

4. CONCLUSIONS
We observed strongly significant evidence in the χ2 test for a rela-
tionship between unstructured jumps and the presence or absence
(but not quantity) of Defects, but also for a relationship between
program size and compressed size and defects (subsection 3.1).
However, very large sample sizes yield very high power in statis-
tical hypothesis tests; this can lead to very small effects becoming
significant. The randomized MNK metric having achieved signifi-
cance twice in the χ2 test shows that this may have occurred in our
experiment.

In subsubsection 3.2.1 we measured the ability of metrics to predict
Defects. Our correlation measurements found USJ to be, slightly
but significantly, the strongest predictor of Defects, and to lose
only 0.0279 points of correlation under size-normalization while

1787

Table 5: Predictability of Churn from unnormalized metric
values, measured by Kendall’s τb. Values range between -1.0
and 1.0.

ID USJ NOT GZP MNK

A 0.3299** 0.4073** 0.4223** −0.0017
B 0.2398** 0.2266** 0.1937** −0.0032
C 0.1801** 0.3026** 0.3033** −0.0160
D 0.1287** 0.1230** 0.1300** −0.0069
E 0.2111** 0.3241** 0.3124** 0.0012
F 0.4153** 0.5341** 0.5350** −0.0035
G 0.1734** 0.1377** 0.1452** −0.0062
H 0.2184** 0.3960** 0.3966** −0.0033
I 0.2160** 0.3290** 0.3281** −0.0007
J 0.1244** 0.1986** 0.1925** 0.0033
K 0.2100** 0.3588** 0.3557** −0.0027
L 0.3052** 0.4437** 0.4417** 0.0065
M 0.1451** 0.2038** 0.1452** 0.0001
N 0.1786** 0.1941** 0.1439** 0.0035
O 0.2215** 0.3948** 0.4396** −0.0044
P 0.1996** 0.3031** 0.3239** −0.0175*

Q 0.3433** 0.5422** 0.5234** 0.0054
R 0.3936** 0.5559** 0.5453** −0.0084
S 0.2614** 0.3632** 0.3723** −0.0139*

T 0.2002** 0.2710** 0.2711** −0.0008
U 0.3282** 0.3947** 0.4049** 0.0022
V 0.0738** 0.1583** 0.3188** −0.0012
W 0.2402** 0.2959** 0.3260** −0.0039
X 0.2196** 0.3165** 0.3287** 0.0021
Y 0.3039** 0.5038** 0.5002** −0.0050
Z 0.2446** 0.3741** 0.3656** 0.0025

Metric mean 0.2348 0.3328 0.3371 −0.0028

* p < 0.05
** p < 0.01

all other metrics gain anticorrelation.

Although corpora G, M, P, V, and W showed outlying (τb < 0.0500)
correlations with NOT and GZP, these corpora still showed their
strongest Defects-correlation with USJ; P, V, and W still showed
τb ≥ 0.0500 with USJ. M, the only corpus to fail a significance
test for correlation between NOT and Defects, still rejected the null
hypothesis with p < 0.01 when testing the link between USJ and
Defects. Likewise, M and V showed significant anticorrelation be-
tween compressed program size and Defects, but still both showed
significance between Defects and USJ. As in all other corpora, the
links between USJ and Defects in these corpora are almost entirely
maintained under size-normalization.

Overall, it appears that USJ provides slight but significant power to
predict Defects, not only independently from NOT but even when
NOT cannot predict very well itself.

When we measured in terms of Churn instead of Defects in subsub-
section 3.2.2, we find that GZP becomes the best predictor, while
under size-normalization USJ loses only 0.0460 points of its cor-
relation. A priori, since Churn measures the cumulative number of
lines of code that were changed in a method across its lifetime, we
expect it to correlate more strongly with size metrics such as NOT
and GZP rather than specific programming constructs like USJ. The
performance of USJ under size-normalization does provide weak
evidence in its favor as a predictor, however.

Measuring in terms of Maintenance (changed lines in code with

Table 6: Predictability of Churn from size-normalized metric
values, measured by Kendall’s τb. Values range between -1.0
and 1.0.

Size USJ GZP MNK

A 0.2442** −0.3069** −0.3182**

B 0.1969** −0.2713** −0.1922**

C 0.1543** −0.2122** −0.2177**

D 0.1120** −0.0324** −0.0785**

E 0.1792** −0.2846** −0.2632**

F 0.2116** −0.4635** −0.4211**

G 0.1687** −0.0467** −0.0972**

H 0.1913** −0.2488** −0.2757**

I 0.1813** −0.2375** −0.2471**

J 0.1006** −0.1731** −0.1475**

K 0.1584** −0.2619** −0.2727**

L 0.2787** −0.3231** −0.3175**

M 0.1286** −0.2456** −0.1571**

N 0.1749** −0.2192** −0.1386**

O 0.1929** −0.1487** −0.2845**

P 0.1791** −0.1124** −0.2082**

Q 0.2394** −0.4500** −0.4267**

R 0.2820** −0.3966** −0.4278**

S 0.2016** −0.2401** −0.2692**

T 0.1374** −0.1963** −0.2104**

U 0.2910** −0.2124** −0.2890**

V 0.0670** 0.0338** −0.1063**

W 0.2197** −0.1529** −0.2131**

X 0.1808** −0.2130** −0.2393**

Y 0.2371** −0.3945** −0.3897**

Z 0.2010** −0.2971** −0.2866**

Metric mean 0.1888 −0.2349 −0.2498

* p < 0.05
** p < 0.01

nonzero Defects) would be expected to again correlate closely with
program size or compressed size, and so it did in subsubsection 3.2.3.
GZP showed the most predictive power against Maintenance prior
to size-normalization.

P and S were outlier corpora; in the former there were no significant
correlations, and in the latter USJ showed the largest correlation
with Maintenance and the only statistical significance. P showed a
significant positive correlation between GZP and Maintenance after
the size and rank normalizations, and S showed a link between USJ
and Maintenance after size-normalization.

In contrast to GZP, USJ kept its positive correlations with Mainte-
nance under size-normalization, losing only 0.0092 points of cor-
relation.

Overall, it appears that goto may deserve to be “considered harm-
ful”. If this conclusion appears trivially intuitive, we still benefit
from having empirical evidence in its favor. However, our results
are not entirely trivial: instead of finding that goto is very strongly
harmful (as Dijkstra held) or not harmful at all (as Knuth and oth-
ers held), we find that it is weakly harmful, but with great statistical
significance. We also found, more often than not, that rather than
NOT having the greatest predictive power, either USJ (unstructured
jumps) or GZP (compressed size) did.

5. ACKNOWLEDGMENTS

1788

Table 7: Predictability of Maintenance from unnormalized
metric values, measured by Kendall’s τb. Values range between
-1.0 and 1.0.

ID USJ NOT GZP MNK

A 0.0750** 0.1048** 0.1125** 0.0002
B 0.0780** 0.0886** 0.1050** 0.0007
C 0.0081 0.0335** 0.0399** 0.0110
D 0.0774** 0.0619** 0.0571** −0.0009
E 0.0502** 0.0639** 0.0653** 0.0071*

F 0.0843** 0.1036** 0.1027** 0.0049
G 0.0071 0.0802** 0.0800** 0.0065
H 0.0457** 0.0794** 0.0722** 0.0081
I 0.0266** 0.0631** 0.0656** −0.0002
J 0.0784** 0.0993** 0.0935** 0.0037
K 0.0355** 0.0701** 0.0803** 0.0003
L 0.0745** 0.0828** 0.0771** −0.0076
M 0.0247** 0.0396** 0.0379** 0.0027
N 0.0344** 0.0484** 0.0449** 0.0066*

O 0.1052** 0.0913** 0.0997** −0.0012
P 0.0141 −0.0105 0.0012 −0.0101
Q 0.0549** 0.0590** 0.0530** −0.0101
R 0.0554** 0.0437** 0.0340** −0.0131
S 0.0226* 0.0050 0.0099 0.0080
T 0.0363** 0.0802** 0.0730** −0.0102*

U 0.0092 0.0419** 0.0524** 0.0073
V −0.0023 0.0070 0.0342** 0.0181*

W 0.0387** 0.0201** 0.0085** −0.0032
X 0.0394** 0.1212** 0.1154** −0.0003
Y 0.0319** 0.0483** 0.0573** −0.0067
Z 0.0334** 0.0630** 0.0673** −0.0031

Metric mean 0.0438 0.0611 0.0631 0.0007

* p < 0.05
** p < 0.01

The authors would like to thank Gal Lalouche. Research was sup-
ported by ISF grant 2020028.

6. REFERENCES
[1] F. E. Allen. Control flow analysis. SIGPLAN Notices,

5(7):1–19, July 1970.
[2] H. Barkmann, R. Lincke, and W. Lowe. Quantitative

evaluation of software quality metrics in open-source
projects. In Advanced Information Networking and
Applications Workshops, 2009. WAINA ’09. International
Conference on, pages 1067–1072, May 2009.

[3] C. Böhm and G. Jacopini. Flow diagrams, Turing machines
and languages with only two formation rules. Commun.
ACM, 9(5):366–371, May 1966.

[4] E. W. Dijkstra. Letters to the editor: GOTO statement
considered harmful. Commun. ACM, 11(3):147–148, Mar.
1968.

[5] N. E. Fenton and M. Neil. A critique of software defect
prediction models. IEEE Trans. Softw. Eng., 25(5):675–689,
Sept. 1999.

[6] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson.
Software defect prediction using static code metrics
underestimates defect-proneness. In Neural Networks
(IJCNN), The 2010 International Joint Conference on, pages

Table 8: Predictability of Maintenance from size-normalized
metric values, measured by Kendall’s τb. Values range between
-1.0 and 1.0.

Size USJ GZP MNK

A 0.0515** −0.0746** −0.0818**

B 0.0605** −0.0376** −0.0690**

C 0.0046 −0.0127 −0.0150
D 0.0683** −0.0487** −0.0518**

E 0.0453** −0.0501** −0.0495**

F 0.0411** −0.0926** −0.0799**

G 0.0047 −0.0386** −0.0478**

H 0.0355** −0.0608** −0.0570**

I 0.0196** −0.0437** −0.0500**

J 0.0701** −0.0949** −0.0760**

K 0.0257** −0.0334** −0.0553**

L 0.0732** −0.0706** −0.0643**

M 0.0239** −0.0115** −0.0244**

N 0.0334** −0.0442** −0.0326**

O 0.0930** −0.0450** −0.0745**

P 0.0143 0.0267** 0.0010
Q 0.0420** −0.0586** −0.0539**

R 0.0368** −0.0603** −0.0379**

S 0.0184* 0.0095 0.0063
T 0.0225** −0.0711** −0.0673**

U 0.0048 0.0049 −0.0267**

V −0.0044 0.0223** 0.0077
W 0.0374** −0.0310** −0.0173**

X 0.0238* −0.1069** −0.1021**

Y 0.0298** −0.0199** −0.0379**

Z 0.0249** −0.0416** −0.0520**

Metric mean 0.0346 −0.0417 −0.0465

* p < 0.05
** p < 0.01

1–7, July 2010.
[7] D. Knuth. Structured programming with GOTO statements.

In E. N. Yourdon, editor, Classics in software engineering,
pages 257–321. Yourdon Press, Upper Saddle River, NJ,
USA, 1979.

[8] S. Markstrum. Staking claims: A history of programming
language design claims and evidence: A positional work in
progress. In Evaluation and Usability of Programming
Languages and Tools, PLATEAU ’10, pages 7:1–7:5, New
York, NY, USA, 2010. ACM.

[9] T. J. McCabe. A complexity measure. In Proceedings of the
2Nd International Conference on Software Engineering,
ICSE ’76, pages 407–, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[10] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proceedings of
the 27th International Conference on Software Engineering,
ICSE ’05, pages 284–292, New York, NY, USA, 2005. ACM.

1789

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

