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A B S T R A C T   

The brain regulates the body by anticipating its needs and attempting to meet them before they arise – a process 
called allostasis. Allostasis requires a model of the changing sensory conditions within the body, a process called 
interoception. In this paper, we examine how interoception may provide performance feedback for allostasis. We 
suggest studying allostasis in terms of control theory, reviewing control theory’s applications to related issues in 
physiology, motor control, and decision making. We synthesize these by relating them to the important prop
erties of allostatic regulation as a control problem. We then sketch a novel formalism for how the brain might 
perform allostatic control of the viscera by analogy to skeletomotor control, including a mathematical view on 
how interoception acts as performance feedback for allostasis. Finally, we suggest ways to test implications of our 
hypotheses.   

1. Introduction: the functions of the brain in the body 

Imagine that you are learning to play dodgeball as a beginner. You 
stand with the other players, divided into two teams, and when the game 
begins you need to pick up a large inflated ball from a pile in the middle 
and hit a member of the other team with it. As you run, throw, dodge, 
catch, and reach, your muscle cells require metabolic fuel in the form of 
molecules such as oxygen and glucose, which must be conveyed to those 
muscle cells via the blood. Your vascular system must deliver and 
distribute blood with speed, bringing nutrients and removing metabo
lites. Despite rapid muscle movements generating waste heat, your body 
temperature must remain within a narrow, viable range. As blood cir
culates more quickly throughout your body, your lungs must also in
crease the rate with which they breathe oxygen in and carbon dioxide 
out. 

Playing a simple game of dodgeball, then, requires your brain to 
continually coordinate the systems of your body. At the same time, your 
body sends sensory information about internal events up the spinal cord 
and vagus nerve to the brain. It is standard practice in neuroscience to 
distinguish the brain’s “physiological sense of the condition of the body” 
(interoception (Craig, 2002, 2015; Quigley, Kanoski, Grill, Barrett, & 
Tsakiris, 2021)) from the collection of sensory modalities that inform the 
brain about the world outside the body (exteroception). 

Interoception includes, but is not limited to, the brain’s modeling of 
the sensory signals from innervated visceral organs. Nociception, 

temperature, and C-tactile afferent-mediated (affective) touch on the 
skin are also considered interoceptive modalities, by virtue of their 
conveyance of sensory inputs to the brain via unmyelinated or lightly 
myelinated ascending fibers in the lamina 1 spinothalamic tract (Craig, 
2002, 2009, 2015). A broad view of interoception also includes 
modeling chemosensation from within the body’s interior, such as 
changes in the endocrine system (Chen et al., 2021), changes in the 
immune system (Dantzer, 2018), and changes in the digestive system 
and gut (de Araujo, Schatzker, & Small, 2020; Muller et al., 2020). For 
simplicity’s sake, however, this paper will treat all these systems as 
“visceral”. 

Viscerosensory signaling (i.e., the ascending signals from the sensory 
surfaces inside the body and the skin) informs the brain of the state of 
the body in an ever-changing and only partly predictable world. Since 
sensory signals themselves are ambiguous and noisy, this poses an in
verse problem for the brain, one of inferring causes (the state of the 
body) from effects (the ascending viscerosensory signals). The brain 
solves this problem by means of an internal model (McNamee & Wol
pert, 2019). Psychologists refer to the internal model, including inter
oception, by many terms, including memory (Buzsaki & Tingley, 2018), 
belief (Schwartenbeck, FitzGerald, & Dolan, 2016), perceptual inference 
(Aggelopoulos, 2015), unconscious inference (Von Helmholtz, 1867), 
embodied simulation (Barsalou, 2009), concepts and categories (Barrett, 
2017), controlled hallucination (Grush, 2004), and prediction (Bar, 
2009; Friston & Kiebel, 2009). Regardless of what it is called, the brain is 
hypothesized to construct a dynamic model of its body in the world 
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Nomenclature 

advantage function A function quantifying the relative decision 
value of visiting a given state, compared to the (estimated) 
time-average decision value across the course of a 
behavior. 65 

allostasis Brain-centered predictive regulation in which the brain 
anticipates the needs of the body and attempts to meet 
those needs before they arise. 5 

control error The difference between a measured or actual state 
and the reference state. 32 

controller A physical system whose behavior transforms signals 
encoding a reference trajectory into signals encoding 
controls to drive a plant. 28 

controls A signal or signals that drive the behavior of a plant by 
changing its state. 28 

control theory The engineering discipline of driving a physical 
system towards a desired trajectory. 6, 28 

disturbance An outside factor that can disrupt the state of a 
physical system. 28 

ergodicity A condition of a stochastic system, or a probabilistic 
model of a system, in which averaging together a series of 
measurements taken over time is equivalent to averaging 
together the same number of measurements taken 
independently at the same time. 41 

exafferent Afferent sensory signals arising from causes external to 
the body or outside the physiological control of the 
nervous system. 34 

exteroception The set of processes by which the nervous system 
takes in, integrates, and infers the causes of signals from 
outside the body. 4 

feedback control The adjustment of controls in real time based on 
measurements of plant state fed back into the controller. 6, 
30, 33, 62 

flow A variable in a (physiological) dynamical system that 
represents the rate of a process, counted in the ratio of 
physical units to temporal units. 

controlled process A particular ow variable that is manipulated by 
homeostatic or allostatic mechanisms to maintain the 
value of a regulated variable within a desired range. 9, 10, 
18 

generative model A probability model of the joint distribution over 
unob served decision variables, and observed variables 
given the unobserved decision variables, from which novel 
instances can be sampled. 16, 52 

internal model A physical system that partially and approximately 
encodes the dynamical structure of the plant to be 
controlled, or potentially a probability distribution over 
such structures. 5, 6, 32 

forward model An internal model that makes predictions forwards 
in time, on the basis of a present state. 32, 62 

inverse model An internal model that makes predictions 
backwards in time, on the basis of an estimated or desired 
future state. 32 

interoception The set of processes by which the nervous system 
takes in, integrates, and makes meaning of sensory signals 
originating within the body. 4 

measurement A signal fed back from the plant to inform the 
controller of the plant state. 30 

noise Randomness or uncertainty intrinsic to physical systems 
which cannot be measured or controlled at an infinitely 
fine scale. 

measurement noise Randomness or uncertainty intrinsic to the 
instruments or sensors that take measurements and 
transmit them to the controller. 32 

process noise Randomness or uncertainty intrinsic to the plant as a 
physical system. 32 

objective function A function from actual or estimated plant states 
to real numbers, in which higher numbers denote better 
agreement with the reference trajectory. 38 

operating point The point on a response curve at which the 
response available to a local perturbation is greatest, often 
but not necessarily found at the center parent. 14 

plant A physical system to be controlled. 28 
prediction error The difference between a measurement or actual 

state, and the predictive estimate of that state. 32 
probabilistic graphical model A probability model in which the 

nodes and arrows of a graph express the conditional 
independence structure between random variables see. 57 

reafferent Afferent sensory signals arising from the consequences of 
movements or self-caused physiological changes. 34 

reference distribution A probability distribution whose 
probability mass or density at each point corresponds to 
the relative robustness of a physiological controller to 
perturbations from that point. 50 

reference trajectory The desired trajectory of evolution through a 
state space for plant behavior over time. 28 

response curve The plotted curve, usually S-shaped, showing a 
response to a stimulus as a function of the stimulus 
quantity or intensity. 12 

capacity curve The response curve of a centrally regulated 
physiological variable or reflex, which compels a central 
regulatory response when dysregulated. 12 

generalized capacity curve The capacity curve of a controlled 
physiological ow, with an inflection point not identical to 
its center. 20 

gain The parameter to a response curve determining its slope 
around the central point. Greater gain implies a smaller 
distance to an asymptote and a narrower adaptive range. 
12 

saturation value The value of an input variable (such as a regulated 
variable) for which a process (such as a controlled 
variable’s underlying process) can yield no further increase 
in response. 12 

set point Fixed, specific points in the quantitative state-space of 
physiological variable to which regulatory systems work to 
return that variable. 6, 9 

settling point The point at which a stock-and-flow system’s stock 
reservoir settles for any given level of the passively 
unregulated inflow or outflow variables. 19 

settling range A range throughout which a regulated variable can 
settle freely under physiologically unregulated (but 
perhaps behaviorally regulated) inflow and outflow, 
without triggering an active physiological response. see 
settling point, 9 

stability A property of the coupled dynamics of a controller and a 
plant, under which control error will eventually shrink 
arbitrarily close to zero after a disturbance. 33 

state A vector of real numbers that determine how plant 
behavior will evolve over time. 28 

state estimate Estimates of plant state based on measurements, 
including measurements accumulated over time. 32 

stochastic optimal control A variety of control theory in which we 
model all forms of noise and uncertainty using probability 
distributions, and write the reference trajectory in terms of 
finding the maximum of a function of the estimated plant 
state. 38 

stock A variable in a (physiological) dynamical system that 
represents a quantity, counted in physical units. 

regulated resource A particular stock variable that is maintained at 

E. Sennesh et al.                                                                                                                                                                                                                                 



Biological Psychology 167 (2022) 108242

3

(Barrett & Simmons, 2015; Hutchinson & Barrett, 2019). In this paper 
we will use the terms prediction, simulation, and concept. 

The process of building and refining an internal model based on 
viscerosensory signals does not, in and of itself, accomplish the brain’s 
most basic task. This task is to maximize the energy efficiency of bodily 
functions, to “anticipate changing needs, evaluate priorities, and pre
pare the organism to satisfy them before they lead to errors” (page 4, 
Sterling, 2012), a process called allostasis (for further discussion on 
allostasis, see Sterling & Laughlin (2015); Schulkin & Sterling (2019)). 
Concurrent evolutionary (Cisek, 2019) and neuroanatomical (Barrett & 
Simmons, 2015; Chanes & Barrett, 2016; Barrett, 2017) evidence sug
gests that exteroceptive sensory signals, and the internal models antic
ipating them, contextualize and support motor control (McNamee & 
Wolpert, 2019). In a similar way, viscerosensory signals provide online 
feedback for allostasis, and interoceptive internal modeling subserves 
allostatic visceromotor control (Barrett & Simmons, 2015; Chanes & 
Barrett, 2016; Kleckner et al., 2017; Barrett, 2017). Many lines of evi
dence suggest the same conclusion: the brain is predictively regulating 
the body, which is a problem of motor control rather than of perceiving 
the world. It is a problem of regulating the body along a desired tra
jectory to achieve efficiency. 

Existing formal models of interoception and body regulation (such as 
those reviewed by Hulme, Morville, & Gutkin (2019) and Petzschner, 
Garfinkel, Paulus, Koch, & Khalsa (2021), as well as recent works such as 
Unal et al. (2021)) have either formulated allostasis as a prospective 
decision-making problem (without considering how those decisions are 
enacted) or as a motor control problem (without considering where 
motor commands come from). Additionally, rather than treat metabolic 
efficiency as the objective, they discuss homeostasis, the regulation of 
bodily variables to fixed set points with fixed tolerances for error. While 
many interpretations allow for regulation to take place preemptively 
(see Carpenter (2004)), homeostasis is still assumed to correct de
viations from a fixed set-point (Sterling, 2014). In addition, homeostasis 
is not well suited to deal with variation in demand on bodily systems 
across contexts and time, variation that has now been well-documented 
(e.g. (Mrosovsky, 1990; Cabanac, 2006; Woods & Ramsay, 2007; Kotas 
& Medzhitov, 2015)). This paper aims to fill this gap by proposing an 
initial formal model of allostatic regulation. In the process, it will con
nect existing accounts of motor control based on internal models 
(Kording & Wolpert, 2006; Gillespie, Ghasemi, & Freudenberg, 2016; 
McNamee & Wolpert, 2019) and accounts of brain function based on 
feedback control (Pezzulo & Cisek, 2016; Pezzulo, Donnarumma, Iodice, 
Maisto, & Stoianov, 2017; Maeda, Cluff, Gribble, & Pruszynski, 2018) to 
the brain’s regulation of the body’s internal environment. 

This paper’s formal model of allostasis draws from control theory, a 
discipline widely employed in both systems biology and engineering. 
Control theory deals with driving dynamical systems to move (approx
imately) along a certain desired trajectory, despite physical disturbances 
to those systems that might drive it off that trajectory. Control theory 
also makes explicit the question of what the desired trajectory is, how 
the trajectory might be physically realized, and how one system can 
drive another to follow a more desired trajectory rather than a less 
desired one. This paper describes an approach to formally modeling 
regulation of the body that retains compatibility with previous empirical 
(e.g. Kleckner et al. (2017); Young, Gaylor, de Kerckhove, Watkins, & 

Benton (2019)) and theoretical (e.g. Pezzulo, Rigoli, & Friston (2015); 
Corcoran & Hohwy (2017); Petzschner et al. (2021)) investigations, 
while building upon control theory from first principles. 

Four sections in this paper connect interoception to allostasis. Sec
tion 2 establishes how interoception enables the brain to estimate the 
physiological efficiency of the body in the present moment, which is 
precisely what it needs to know to evaluate and refine actions. Section 3 
then introduces control theory and explains its applications in physi
ology, motor control, and decision making; these provide the conceptual 
tools for modeling how interoception informs allostasis. Section 4 ap
plies the principles of control theory to derive a novel formal model of 
how the brain might estimate the desirability of physiological trajec
tories and make prospective regulatory decisions. Finally, Section 5 
synthesizes the previous three sections to explore the direct implications 
of the proposed formalism. Appendix A provides a glossary of terms; 
Appendix B.1 provides mathematical details related to Section 3; and 
Appendix C.1 provides mathematical details related to Section 4. 

2. Interoception: modeling the body, estimating its efficiency 

This section takes up the question of how interoception offers per
formance metrics for visceromotor regulation. Many interoceptive mo
dalities consist of viscerosensory signals whose values must remain 
within specific ranges conducive to efficient bodily function and survival 
(making these signals different from exteroceptive sensory signals in this 
regard). A core assumption is that the brain, as part of allostasis, esti
mates how efficiently physiological processes can enable or support 
needed changes in resource levels (Schulkin & Sterling, 2019). Towards 
that end, Section 2.1 differentiates two types of viscerosensory variables: 
those that represent quantities of resources (called regulated resources) 
and those that represent rates 1 at which processes act (called controlled 
processes) .2 Section 2.2 applies these concepts to the well-studied 
controlled process of the carotid baroreflex, which the brain must 
modulate by central command to meet oncoming demand for the oxy
gen, glucose, etc. in the blood. This subsection suggests that the brain 
predicts ongoing fluctuations in physiological efficiency. Section 2.3 
considers a more complex regulatory setting, in which several physio
logical processes act on a common metabolic resource in different ways, 
and generalizes the proposed notion of physiological efficiency estima
tion to this more common case. Finally, Section 2.4 discusses how effi
ciency estimation in interoception could enable the brain to 
constructively evaluate a rich variety of predicted bodily conditions 
without requiring a modular, purpose-specific “reward” system. 

The discussion of control theory in Section 3 then will use the con
cepts described here. In Section 4 these concepts will undergird a 
mathematical formalism for allostatic decision making. 

2.1. Regulated resources and controlled processes in physiology 

Regulated resources are kept relatively stable over time. Examples 

or near a stable level by homeostatic or allostatic 
mechanisms in the body. 9, 10, 18 

threshold value The value of an input variable (such as a regulated 
variable) for which a process (such as a controlled 
variable’s underlying process) can yield no further 
reduction in response. 12 

transfer function The ratio of a system output to its input, written 
in the time-independent frequency domain via a 

mathematical transformation. 12 
value function The probabilistic average, over estimated plant 

states, of the sum of objective function values into the 
indefinite future. 39, 49, 72 

Bellman equation Equation that defines the optimal value function 
recursively over timesteps. 39, 60 

viscerosensory signaling Afferent sensory signaling from the 
innervated viscera. 5  

1 Quantities of change per period of time  
2 The terminology of regulated resources and controlled processes comes 

from Kotas & Medzhitov (2015) and Cabanac (2006). 
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include blood glucose and core body temperature. By contrast, a non- 
regulated resource such as blood alcohol (ethanol) does not have its 
level stabilized by the body in most contexts. Insofar as a regulated 
resource like blood glucose represents a physical quantity3 or a sub
stance (like glucose), its quantity cannot change instantaneously. 
Regulation of resources does not have to move levels towards a specific 
set point,4 and in fact, many can freely vary over a range of possible 
values without regulatory response. Such a range is called a settling 
range, since the level of a resource might settle anywhere in the range 
without provoking a regulatory response. 

A regulated resource remains (relatively) stable over time thanks to 
the adaptive change of one or more controlled processes. Controlled 
process rates are the rates at which physiological processes operate. 
These regulatory processes contribute to the relative stability or change 
in regulated resources over time. Examples of controlled processes 
include sweating and shivering, while an example of a physiological 
change that is not a controlled process is when body temperature in
creases as a result of the body being in direct sunlight. The rates of 
controlled processes can speed up or slow down within a broad range by 
altering energy expenditure. Where a controlled process falls within its 
operating range will determine its effect upon the regulated resource to 
which it is coupled. Controlled processes do not have to affect the un
derlying regulated resource directly by a single causal mechanism; they 
can have their effect via other controlled processes (Box 1). 

In evolutionary terms, controlled processes contribute to the fitness 
of the organism by responding to changes in the relevant underlying 
regulated resource to keep that variable within a viable range. In 
mathematical terms, changes in controlled process rates can be modeled 
as functions of regulated resource levels. However, those controlled 
processes also themselves have limited ranges of possible action. The 
limited ranges of both regulated resources and controlled processes can 
be predicted and modeled in terms of capacity curves, which are the topic 
of the next section. 

2.2. Predicting and modeling the ranges of regulated and controlled 
processes 

Both the heart rate and blood pressure must increase during aerobic 
exercise, as noted in the dodgeball example. If you were to try to play 
dodgeball at a resting level of blood flow, your muscles quickly would 
become fatigued and you would be unable to move (for a more detailed 
discussion, see Sterling & Laughlin (2015)). Your brain must therefore 
direct the sympathetic branch of your autonomic nervous system to 
increase its outflow, including increasing blood pressure via vasocon
striction .5 Under resting conditions, the baroreceptor-heart rate reflex 
would normally counter any rise in blood pressure by slowing the 
heartbeat. However, with exertion, your blood pressure and heart rate 
both must increase to support the needed increase in blood flow required 
by your exercising muscles. To accomplish this specific change, your 
brain modulates the response of your baroreceptor-heart rate reflex 
(Potts, Shi, & Raven, 1993, 1995), shifting the entire function relating a 
change in your blood pressure to a change in your heart rate (Ogoh et al., 
2002). The alterations enable redistribution of blood to meet the new 
demand so that you can run to avoid the ball or throw the ball at 
someone else. 

However, blood pressure is a controlled process, not a regulated 
resource. It must shift in order to stabilize the regulated resources of 
oxygen, glucose, and carbon dioxide concentrations in the blood. It 
therefore lacks a set point to which the brain will regulate the 
baroreceptor-heart rate reflex, the heartbeat, or other variables affecting 

the blood pressure. Although the controlled process regulating the blood 
pressure can and does shift its rate with time, that rate can only rise or 
fall so far before reaching physical limits, after which further modula
tion of the baroreceptor or the heartbeat will have no additional sig
nificant effect. The baroreflex’s responsive range can be defined as the 
range between where the controlled process (the blood pressure) 
effectively cannot decrease further (the threshold value point) and 
where it cannot increase further (the saturation value point .6 

Threshold and saturation points partly define curves that are derived 
from functions which physiologists commonly use to model the 
connection between perturbations and regulatory responses, usually 
naming them response curves (e.g., Ogoh et al. (2005)) or transfer 
functions. The term capacity curves will be used to emphasize the fact 
that while such curves can shift over time, in any one instant they 
represent the current range of limited regulatory resources available to 
an organism. The terms threshold and saturation will also be used for the 
levels of the regulatory responses (plotted on the vertical axis) of a ca
pacity curve, rather than the levels of the perturbing stimulus (plotted 
on the horizontal axis). 

Fig. 1 shows an example capacity curve for afferent activity in human 
baroreceptors. The left tick marker shows the threshold value, and the 
right tick marker shows the safturation value. A parameter called the 
gain specifies the relative slope of the curve throughout its range, 
determining where the threshold and saturation values will fall. The 
mean arterial blood pressure (horizontal axis) is a controlled process, 
and so the baroreflex activation (vertical axis) is also a controlled pro
cess, one which only affects the underlying regulated resources (e.g., 
blood glucose, blood oxygen, etc.) indirectly. 

Mathematically, an ideal small change in the blood pressure will lead 
to a certain ideal small change in baroreflex activation .7 The operating 
point is where this potential response is greatest. For a symmetrical 
capacity curve such as that of the baroreceptor-heart rate reflex above, 
the operating point will lie in the center of the curve. Fig. 2 depicts the 
operating point with a diamond marker and the potential response 
around that point as a yellow dotted line. Physiologists often employ the 
sigmoidal form displayed here for a capacity curve because it provides a 
good empirical fit to data (see McDowall & Dampney (2006), Dampney 
(2016)). 

The capacity curve in Fig. 1 has mathematical form 

y(x; μ, k,R,B) = R
1 + exp( − k(x − μ)) + B, (1)  

and its parameters will take values according to the figure. These values 
include the response range R (from lower to upper asymptote), the lower 
boundary B on the response, the operating point x = μ, and the gain k. 
The variable x on the figure’s horizontal axis represents the mean 
arterial blood pressure, while the variable y on the figure’s vertical axis 
represents the baroreflex activation as a percentage of the resting mean. 
For the figure, the parameters have the values 

R = 200,B = 0,
μ = 100, k = 15.

Eq. (1) defined y, the baroreflex activation, as a function of x, the mean 
arterial blood pressure. Elementary algebra allows the equation to be 
solved for x or y as a function of an intermediate quantity u ∈ (0, 1) 
called the quantile, 

u(x; μ, k) = 1
1 + exp( − k(x − μ)), (2)  

y(u;R,B) = Ru + B, (3) 

3 which has physical units independent of time  
4 A concept proposed by Cannon (1929)  
5 Typically with a concomitant withdrawal of parasympathetic activity 

(Berntson, Cacioppo, & Quigley, 1991; Rowell, O’Leary, & Kellogg, 1996). 

6 Terminology adapted from McDowall & Dampney (2006)  
7 Mathematically educated readers will recognize this as a derivative. 
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x(u; μ, k) = μ +
1
k

log
( u

1 − u

)
. (4)  

These equations outline the form of a generative model: a procedure for 
probabilistically predicting observed variables in terms of unobserved 
variables. μ, k, R, B, u serve as unobserved variables, which are sampled 
from a prior probability distribution not dependent on data. These 
variables are plugged into the equations to generate predictions for the 
observed variables: mean blood pressure x and baroreflex afferent 
activation y. Together, the prior and the likelihood can form a posterior 
probability distribution, which defines the probabilities of different 
values for the unobserved variables given the observed ones. In the 
brain, any internal generative model with similar structure to the above 
would likely obtain its probability densities for the unobserved variables 
from its general knowledge of the body in the world, rather than starting 
with an uninformed prior. 

The proposal here has an unusual feature: the equations for x (the 
mean arterial blood pressure) and y (the baroreflex activation as a 
percent of baseline) are in terms of the quantile variable u. The quantile 
variable uniformly represents the relationship between the blood pres
sure and the baroreflex activation, irrespective of changes in the ca
pacity curve’s operating point μ and gain k. The quantile depends only 
on the functional form of the capacity curve, not on the parameters. The 
distance u(x) − u(μ) (i.e., the relative distance between the current value 
of x and the operating point) therefore provides a time-independent 
performance metric for the regulatory task of the baroreceptor-heart 
reflex. Capacity curves change all the time due to variation in their 
underlying physiological systems (see plot of arterial pressure over time 
in Bevan, Honour, & Stott (1969), reprinted in Sterling (2012)), but 
quantiles will retain the same meaning no matter the current parameter 
values. This supports high regulatory flexibility, a concept often pro
posed by physiologists as an adjustable set point (Cabanac, 2006). 

Any point on any capacity curve can be written in terms of quantiles, 
because capacity curves represent physical responses with finite ranges. 
Insofar as controlled process responses have the bounded form described 
above, they can potentially be described in terms of capacity curves, 
with mathematical description similar to that given above (although 
usually more complex in the details). Insofar as this remains empirically 
true, interoceptive internal modeling (Barrett & Simmons, 2015) could 
be described, mathematically, as estimating capacity curves over time. The 
brain could potentially model those capacity curves in terms of quantiles 
without loss of generality, and those quantiles would have a clear reg
ulatory interpretation. 

Overall, if the brain’s internal model were to infer capacity curves as 
a part of interoception, then a variety of sites in the brain would have to 
generate predictions, and integrate prediction errors, regarding both 
regulated resources and controlled processes. These sites would have to 
receive afferent viscerosensory signals to which to compare efferent 
predictions. The brain would have to generate efferent predictions for 
each capacity curve’s key parameters (e.g., operating point, gain, 
boundary, and range), and combine those parameters with an efferent 

Box 1 
Illustration by example. 

Returning to the dodgeball example, the full range of physiological processes maintaining a person’s ability to play would include the metabolic 
necessities and byproducts carried in the blood itself: oxygen, glucose, and carbon dioxide chief among them. These can be viewed in terms of 
the functional categories delineated above. The levels of oxygen, glucose, and carbon dioxide in the blood, at any given moment, are called 
regulated resources. The demand for metabolic inputs by the muscles then can be considered a controlled process. In the specific case of the 
muscles, their metabolic uptake changes the circulating levels of oxygen, glucose, and carbon dioxide. In addition, blood pressure is a controlled 
process which subserves the maintenance or replenishment of the regulated resources. The heart rate and levels of autonomic activation (in both 
branches of the autonomic nervous system) then also function as controlled processes, modulated to indirectly keep the regulated resources in 
the desired range.  

Fig. 1. Capacity curve for baroreceptor afferent firing, taken as a pedagogical 
example from Heesch (1999). As the curve flattens in either direction, the 
baroreflex can no longer respond proportionally to changes in blood pressure. 
The tick markers show the threshold value (the fifth percentile of response) and 
the saturation value (the 95th percentile of response) on the horizontal axis. 

Fig. 2. Capacity curve from Fig. 1 above (blue), with the linearized response 
(orange) around the operating point (blue diamond marker). The diamond 
marker denotes the point of optimal responsiveness, or operating point. 
Responsiveness is optimal when the tangent line has maximal slope around the 
current blood pressure. Regulating to optimal responsiveness requires either 
keeping current blood pressure near the operating point, or relaxing the bar
oreflex’s gain to widen the curve. The latter sacrifices performance (slope) at 
the operating point but provides greater resilience against uncertainty and 
perturbations. Note that the operating point refers to the point on the horizontal 
axis. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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prediction of the present state’s quantile representation. These would 
generate interoceptive predictions of viscerosensory stimuli: the regu
lated resources and controlled processes related by capacity curves. 
Afferent viscerosensory signals would confirm or correct these pre
dictions, and thus correct or confirm the estimated performance metric u 
(x) − u(μ). 

The process of correcting and/or confirming predictions will usually 
entail spending a sizable amount of energy just on neural firing to up
date the various predictions (Theriault, Young, & Barrett, 2021). On top 
of that, the brain also will have to spend energy to reconsider and re-plan 
current behavior. Imagine an internal chest pain during a game of 
dodgeball, when you know you haven’t been hit: it could be heartburn, 
or it could be a heart attack. Whatever the cause, the brain will have a 
metric of physiological efficiency with which to determine how to spend 
resources on updating predictions and behavior, so as to optimally keep 
regulated resources within the responsive ranges of their corresponding 
controlled processes. 

2.3. Modeling the viable ranges of multiple controlled processes to support 
multi-system regulation and coordinated action 

Unlike the simple regulatory relationship between blood pressure 
and heart rate, many regulated resources in the body cannot be tightly 
controlled by a small number of effectors. To return to the dodgeball 
example, the full range of physiological processes maintaining a per
son’s ability to play would include the metabolic necessities and 
byproducts carried in the blood itself: oxygen, glucose, and carbon di
oxide are chief among them. In the specific case of the muscles, their 
metabolic uptake changes circulating levels of oxygen, glucose, and 
carbon dioxide, which are regulated resources that must remain within 
viable ranges. Heart rate, blood pressure, and the level of activation in 
both branches of the autonomic nervous are controlled processes that 
the brain modulates in service to the maintenance or replenishment of 
the regulated resources. Next, we focus on blood glucose as a regulated 
resource, with glucagon as the controlled process enabling secretion of 
glucose into the blood and insulin as the controlled process enabling 
removal of glucose from the blood. 

Emerging theoretical (Saunders, Koeslag, & Wessels, 1998, 2000) 
and experimental (Sohn & Ho, 2020) evidence suggests that blood 
glucose levels are not actively defended at a biologically hard-coded set 
point any more than heart rate is. Instead, glucagon and insulin activity 
balance each other’s effects to bring the blood glucose to a point within 
its settling range (a settling point) with glucose entering the blood after 
the person ingests food and glucose then crossing from the blood into 
other bodily tissues to support their function. Recent evidence suggests 
that when glucagon stimulates insulin production in β-cells in the 
pancreas, it acts to suppress overshoot of the blood glucose level (Gar
zilli & Itzkovitz, 2018). This suggests that uptake of glucose into the 
blood from ingested food could plausibly act as the passive variable of a 
settling-point regulation model (Speakman et al., 2011). The rate of 
glucose uptake into tissues from the blood (which leads to insulin 
secretion) is plausibly a function of glucose availability in the blood. 

Settling-point dynamics require either that a controlled process be 
regulated to decline proportionally to the current level of the regulated 
resource, or that outputs be regulated to increase proportionally to the 
current level of the regulated resource. Speakman et al. (2011) give the 
example of a water reservoir, with water as the resource and outflow 
from the reservoir as the controlled process. If the depth of the reservoir 
grows higher due to rain, so will the volume of outflow. The depth of the 
reservoir stabilizes when the incoming rain and the outgoing outflow 
over a period of time equal each-other. 

In the body, both of these forms of regulation can and do happen: 
they are the job of the brain (Filippi, Abraham, Yue, & Lam, 2013). The 
brain may operate as an additional hierarchical level of control, actively 
balancing and minimizing the necessary metabolic control effort by 
preemptively regulating intake and uptake of glucose through behavior. 

Thus, uptake of glucose by the muscles during a game of dodgeball re
sults in a fall in blood glucose and a corresponding increase in secretion 
of glucagon (Hall & Hall, 2020). Glucagon acts to cause the release of 
glucose into the blood (from liver cells). In the event of glucose over
shoot (i.e., excess levels in blood), insulin will be secreted to restore 
blood glucose into its settling range. The brain also registers a “cost” of 
the glucagon release because it required energy expenditure (both in 
synthesis and secretion), an expenditure that could instead have been 
spent on the dodgeball game, had the glucose level been more actively 
maintained. The reverse can occur when the blood contains a surfeit of 
glucose stock, which then must be taken up into other tissues for storage 
or usage. 

Mathematical modeling studies suggest that the inflection (oper
ating) points on the generalized sigmoidal curves (generalized capacity 
curves) for glucagon and insulin can be found at 3.01 millimolar (mM) 
and 8.6 millimolar (mM) respectively, quite close to the lower and upper 
limits of normal human blood glucose (König, Bulik, & Holzhutter, 
2012). Fig. 3 shows plots of the resulting functions, which can be 
interpreted as capacity curves. The inflection points are shown by the 
diamond markers, and by definition, each inflection point is a local 
optimum of regulatory responsiveness. If glucagon and insulin have 
their greatest responsiveness at the limits for hypoglycemia and hyper
glycemia respectively, then regulation of glucose by behavior will aim to 
avoid straining either of the two hormones’ capacity curves, effectively 
keeping blood glucose in the normoglycemic range. 

Evidence from existing studies (Filippi et al., 2013; Morville, Friston, 
Burdakov, Siebner, & Hulme, 2018; Zimmerman et al., 2016) suggests 
that chemo-sensory cells in the circumventricular organs and certain 
nuclei of the hypothalamus, which detect glucose, may be 
well-described as predictively modeling such generalized capacity 
curves. This kind of functionality may extend not only to insulin and 
glucagon, but to other paired (tandem) controlled processes in the 
endocrine system, such as leptin and ghrelin (Morville et al., 2018). 
Afferent hypothalamic firing can be interpreted as sending prediction 
errors to other parts of the forebrain (Chen & Knight, 2016; Morville 
et al., 2018) thereby signaling an unanticipated metabolic change, and 
potentially updating the brain’s internal model as described by these 
capacity curves. Each such capacity curve and the current point upon it 
could then motivate some mode of behavior: a predictable mixture of 
glucagon, ghrelin, and other similar signals could be well-described as 

Fig. 3. Capacity curves for glucagon (blue) and insulin (orange) responses to 
glucose levels in the blood, measured in millimolars. The diamond markers 
show the respective operating points (3.01 mM for glucagon, 8.6 mM for in
sulin) of the curves, and the space between those two markers denotes the 
potential settling range for blood glucose content. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
Derived from König et al. (2012). 
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motivating consumption behaviors (e.g., a shift in autonomic activity 
towards greater relative sympathetic nervous system activation, explo
ration of the environment, etc.), while a predictable mixture of insulin, 
leptin, etc. could be well-described as motivating satiety behaviors (e.g., 
a shift towards relatively greater parasympathetic activity, reduced 
motor activity, etc.). 

Similar paired controlled processes seem to appear in a variety of 
regulatory “modalities” throughout the body, ranging from autonomic 
activity on the heart (Berntson, Cacioppo, & Quigley, 1991) to blood 
glucose (Filippi et al., 2013) (as above) to adiposity (Speakman et al., 
2011) (in the form of leptin and ghrelin). Evidence also suggests that the 
brain can combine these signals when they operate in tandem to regulate 
common behaviors (Zimmerman & Knight, 2020). Allostasis may 
employ a generalized control motif of having paired peripheral 
controlled processes, which sometimes work together to drive regula
tory behavior in one direction (e.g., a reciprocal mode of sympathetic 
increase and parasympathetic decrease which both drive the heart rate 
to increase), but can also “antagonize” each other’s effects (such as when 
both the sympathetic and parasympathetic branches coactivate, pro
ducing a heart rate that is the sum of these two countervailing forces, 
each driving the heart rate in a different direction). Interoceptive 
modeling in the brain also may employ these motifs. Such general motifs 
in interoceptive processing could provide a domain-general mechanism 
for quantifying regulatory imperatives in interoceptive internal models. 
This may provide greater flexibility in both physiological regulation and 
behavior than a centrally enforced set point can provide, as well as 
suffering less error against challenges in each direction (see (Saunders 
et al., 1998, 2000)). 

2.4. Viable ranges and capacities could obviate a modular “reward 
system” 

Standard accounts of allostatic regulation describe it chiefly on the 
physiological level of analysis, attributing allostatic control in the cen
tral nervous system to reinforcement learning. As Sterling (2012) writes, 

The central representation of “reward” is a brief burst of spikes in 
neurons of the ventral midbrain that release a pulse of dopamine to 
the nucleus accumbens and prefrontal cortex. The precise corre
spondence between a “feeling” and a specific neuro-transmitter is 
difficult to establish and is probably oversimplified, since many 
chemicals change in concert. Yet, one imagines that the dopamine 
pulse evokes momentary relief from flagellating anxiety and a brief 
sense of satisfaction/pleasure – at last, the carrot. 

The picture of “rewards” painted here suggests a modular “reward 
center” or “reward system” in the ventral midbrain, one whose 
specialized role is to perform apples-to-oranges comparisons in service 
to allostasis. However, insofar as the ventral midbrain would function as 
a “reward center”, the “reward” signals sent to the rest of the brain 
would not carry contextual information about the bodily needs to which 
they refer. More recent evidence shows that there is no unique, localized 
“reward center” or “reward system” in the brain: broad cortical and 
subcortical brain networks play various roles in reward as a construct 
(Berridge & Kringelbach, 2015) or an abstract concept in experiments. 

Since there is no single brain site that specifically encodes appetitive 
or aversive reinforcement value, it is useful to reframe discrete “reward” 
and “decision” systems as a domain-general allostatic control system. 
Abundant empirical evidence supports such a reframing (Barrett & 
Satpute, 2013; Hackel et al., 2016), particularly analyses of the 
default-mode network and the salience network and their subcortical 
connections (Barrett & Simmons, 2015; Kleckner et al., 2017). Compu
tationally, these networks could implement a formal model similar to 
what we introduce later in this paper, or they could translate intero
ceptive information into a teaching signal for a reinforcement learning 
system, as in Keramati & Gutkin (2014). The domain-generality of 

interoception provides further theoretical support for the idea that we 
do not need “mental modules” or “faculty psychology concepts” to un
derstand how a brain works (Barrett, 2009; Lindquist & Barrett, 2012). 

If interoceptive processes operate to estimate parameters analogous 
to operating points and tolerances, then those processes should be able 
to convey sufficient information to the brain for purposes of regulating 
the body. The ideas of Section 2.2 and Section 2.3 can be usefully 
combined here when considering controlled processes that regulate the 
same underlying resource. From this perspective, interoceptive predic
tion errors, in the context of decision-making experiments, can be 
interpreted as learning about “rewards” via “reward prediction errors”. 
Movement towards an operating point then can be considered a 
“reward”, and movement away from an operating point a “cost”. Each 
such movement can be weighted according to the same capacity curve’s 
gain or inverse-tolerance; this would convey the (momentary, esti
mated) relative “worth” of adapting to a load on one innervated organ 
system versus another. Conceived of in a high-dimensional space, such 
movements can be viewed as “towards” and “away from” trajectories of 
changing operating points. 

Within a view of brain function not based on a modular reward 
system, the neurotransmitters produced by unmyelinated and lightly 
myelinated interoceptive nerve fibers (see Carvalho & Damasio (2021)) 
could play a role in signaling capacity curves. These neurotransmitters, 
which include dopamine and serotonin, are commonly thought to act as 
teaching signals for action (Boureau & Dayan, 2011). In support of this 
suggestion, dopaminergic neurons in the ventral tegmental area in mice 
(Dabney, Rowland, Bellemare, & Munos, 2018; Dabney et al., 2020; 
Lowet, Zheng, Matias, Drugowitsch, & Uchida, 2020) have been 
modeled using a class of mathematical functions that include our ca
pacity curves. 

A mathematically sound and biologically plausible account of allo
static control does not require a modular or separate “reward system” in 
the central nervous system. Rather, it simply requires a brain and a 
viscerosensory peripheral nervous system to behave as if parameters for 
capacity curves (describing how adaptable any given state would be to 
unexpected disturbances) were signaled alongside the location of cur
rent physiological states on the corresponding capacity curves. Different 
physiological needs (say, core body temperature versus blood glucose 
levels) could then be added, subtracted, compared, etc. by comparing 
the distance of the current state from the operating point in any given 
dimension, scaled by the capacity curve’s gain. Our formal model later 
will make this idea more precise, providing a way to put numbers to such 
“distances” and “movements”. 

2.5. Summary 

This section outlined a proposal for how the nervous system could 
potentially function to coordinate and control organ systems across 
timescales to provide allostatic regulation of the body. Section 2.2 
considered the movement of physiological systems’ response curves 
(such as the example shown in Fig. 1) as signifying their capacity to 
adapt to challenge; the idea of matching actual system loads to operating 
points (along the lines of Fig. 2) provides a foundation for allostatic 
regulation. Section 2.3 extended the idea of capacity curves to systems 
based on more behavioral, settling-point regulation; in such systems the 
brain functions as the top level of a hierarchical control scheme, regu
lating the lower-level controllers. In Section 2.4 we then reasoned that 
movement toward or away from the responsive range of a capacity curve 
can be treated as “reward” or “cost”, respectively, and suggested that 
this could potentially obviate the need for a dedicated neural circuit or 
module that specifically calculates the behavioral constructs of “reward” 
and “cost”. Evidence from cognitive neuroscience supports the view that 
the brain lacks such modules, suggesting that we may gain empirical and 
theoretical traction by investigating decision-making constructs from an 
allostatic point of view. Section 3 will build on these ideas by intro
ducing control theory, and consider the use of control theory in 
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physiological regulation, motor control, and decision-making, as well as 
discuss the potential for control theory to unify previously disparate 
views on bodily regulation. Section 4 will build upon these foundations 
to propose a formalism for allostatic decision making. Embodied deci
sion making includes all three of the forms of uncertainty to which 
allostatic regulation is subject: uncertainty about what is physiologically 
efficient, uncertainty about the consequences of movements, and un
certainty about the external world. 

3. Control theory: A unifying lens for physiology, motor control, 
and decision making 

Section 2 hypothesized that allostatic regulation can be understood 
in terms of controlled processes’ responsiveness to perturbation. It 
introduced capacity curves, responsive ranges, regulated resources, and 
controlled processes as ways to describe aspects of physiological regu
lation; it also sketched the functional form of a generative model that 
could infer capacity curves as latent properties of related interoceptive 
variables. It then suggested that moving actual physiological states to
wards the operating points of maximum adaptability, with each move
ment weighted by the relative gain (inverse-tolerance) of the response 
capacity, can formalize the functional dynamic of allostatic regulation. 
However, interoception is perception of the innervated body: it can 
include sensing allostatic responsiveness of present states of the body, as 
achieved by past actions, but it cannot produce present and future ac
tions in and of itself. The latter is the role of visceromotor control pro
cesses. To investigate how the brain accomplishes visceromotor control, 
some additional theoretical tools are required. 

This section introduces concepts from engineering control theory, 
and then reviews its applications in the life sciences. These include 
physiology (Section 3.1), skeletomotor movement (Section 3.2), and 
decision making (Section 3.3). Section 3.4 will connect future intero
ceptive states to present movements, illuminating what makes allostatic 
regulation more energy efficient than homeostatic regulation. The next 
section will build off the account of control used in physiology to suggest 
how interoception supports allostasis. 

3.1. Control theory for physiology: A reliable body built from unreliable 
parts 

Broadly, control theory deals with driving a physical system towards 
a desired trajectory, even when the system is built from unreliable or 
unpredictable parts. Control theorists call the driven system the plant, 
and its desired trajectory the reference trajectory.8 Generally a plant 
must be made to conform to its reference trajectory by a driving system 
called the controller. In controls engineering, these systems are typically 
thought to be separate physical entities with connections between them, 
and along these connections the systems transmit signals to each other. 
The “reference signal” that specifies the reference trajectory goes into 
the controller, and signals that leave the controller and enter the plant 
are called controls. Controls affect the state of the plant over time. The 
reference signal is thought to derive from a source that is external to the 
system, such as an engineer or a machine operator. Fig. 4 shows an 
example “block diagram” for an engineered control system. 

A controller functions to steer the plant along its reference trajectory, 
adapting to external disturbances that would push the plant away from 
the reference trajectory. From the standpoint of a brain controlling a 
body, “disturbances” might be thought of as uncontrolled changes in the 
workings of the body’s internal systems. There is an important distinc
tion between an unpredictable event and a disturbance: unpredictable 

events can either push a system away from its reference trajectory or 
towards it, but a disturbance, which may or may not be surprising, is 
always an event that pushes the system away from its reference trajec
tory. Thus, a disturbance is always relative to the reference trajectory 
(Box 2). 

The whole point of a control system is to adapt to disturbances, and a 
system can attain much greater robustness and adaptability by using 
sensors to measure the plant’s actual behavior over time. Control the
orists call these measurements the feedback for the controller, and the 
use of feedback to adjust control outputs is called feedback control. 
Physiologists recognize feedback control as a ubiquitous feature of 
bodily function (Carpenter, 2004; Cosentino & Bates, 2011), with 
endocrine control of blood glucose being a well-studied example 
(Saunders et al., 1998, 2000). Feedback control is essential because no 
controller is ever perfect: neither all forms of noise nor all external 
disturbances can ever be fully accounted for. If the feedback loop (seen 
in Fig. 4 as the arrows flowing from controller to plant, plant to state 
estimator, and state estimator to controller) is cut, the controller can no 
longer receive any information from the plant. The control signals 
calculated under such circumstances are called open-loop or feedforward 
controls, or even (somewhat idealistically) plans. 

The concepts of control theory can illuminate the anatomy of the 
baroreflex, the example physiological system described above. For 
simplicity’s sake, the baroreflex and its components are considered the 
system in question. Its plant is the organs of the cardiovascular system as 
innervated by the autonomic nervous system (ANS). Its controller is a 
comparator circuit in the midbrain, specifically in the nucleus tractus 
solitarius (NTS) (Zanutto, Valentinuzzi, & Segura, 2010). Its reference 
signal comes from two sources: over the short term, top-down signaling 
from the cerebral cortex (which is outside the controller itself), and over 
the long term, midbrain structures rostral to the NTS, based upon (as yet 
not fully understood) endocrine signals (Osborn & Foss, 2017). These 
are compared to the actual blood pressure measured by the carotid and 
aortic baroreceptors (feedback state estimator). The baroreflex (the 
controller) adjusts cardiovascular variables to align the measured blood 
pressure (as sensed by the baroreceptors) with the reference trajectory of 
operating points (as specified by short-term signaling from the forebrain 
or longer-term endocrine signaling), by means of the sympathetic and 
parasympathetic branches of the autonomic nervous system (as control 
signals). 

For a controller to perform well, it must contain some sort of copy or 
mirror of the plant’s expected behavior, which is referred to as an in
ternal model (Conant & Ashby, 1970; Francis & Wonham, 1976). 
However, inaccuracies in the internal model limit controller perfor
mance (as does an absence of feedback in open-loop control). Internal 
models serve a dual purpose: to infer past trajectories 9 (including their 
control signals) on the basis of present or even counterfactual mea
surements (such as the reference signal) and to estimate future states 
and measurements10 in the plant on the basis of control signals. Fig. 4 
divides these two functions into the components of a control system that 
they inform: the controller (purple) infers controls from state estimates 
to track the reference signal,11 and the state estimator (yellow) predicts 
future measurements on the basis of present control signals, refining 
those state estimates using measurements.12 Together, internal models 
predict the future and infer the past in the plant even when plant 
behavior is subject to process noise and measurements are subject to 
measurement noise. 

Internal models play an important and specific role in control theory 
(Wolpert & Kawato, 1998; Kawato, 1999). State estimation of future 
measurements based on present control signals allows the difference 

8 Generally there is assumed to be a collection of possible desirable trajec
tories, so that a system can compensate for severe disturbances to its original 
trajectory by picking another acceptable trajectory from the collection. Theo
rists have labeled this quality “meta-stability”. 

9 As an inverse model  
10 As a forward model  
11 Inverse modeling  
12 Forward modeling 
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between predicted and actual measurements, which is called the pre
diction error, to be used to measure the accuracy and precision of online 
control. The state estimator (yellow) can use prediction errors to send 
updated state estimates (dashed purple arrow) back to the controller. 
Comparing the updated state estimates to the reference signal then 
yields a quantity called the control error, on the basis of which the 
controller can refine the control signals. The process of calculating 
prediction errors and control errors online, and using them to improve 
control signals, is called feedback control. Model-based feedback control 
is widely used and well-known for driving control error to zero over time 
(a property called stability), particularly when prediction errors are also 
driven to zero by refining the internal model. This is a property that 
open-loop planning cannot enjoy, since an open-loop control system 
does not measure the control error, which amounts to (falsely) assuming 
it to be zero. An internal model alone only suffices for open-loop, 
feedforward planning, while control requires feedback. 

Controllers also can couple to each other hierarchically: a higher- 
level controller can send a control signal to a lower-level controller, 
which functions as the reference signal for that lower-level controller. In 
turn, the lower-level controller may send a control error signal up to the 
higher-level controller. The higher-level and lower-level controller also 
each may have their own state estimators based on their own internal 
models. The next subsection will address hierarchical control in human 
motor control. 

3.2. Moving the body: The referent control hypothesis 

The referent control hypothesis (Feldman, 2015; Latash, 2021) de
scribes the skeletomotor system in terms of a hierarchy of controllers, 
with higher-level controllers in the brain prescribing reference trajec
tories to the lower-level reflexes in the spinal cord. These reflexes then 
compare the actual length of the muscle, as signaled by afferent pro
prioceptor neurons, to the reference length sent down by the brain, and 

contracts the muscle to bring the two into agreement (Latash, 2010; 
Feldman, 2016). Effectively, higher level controllers tell lower ones 
what trajectory to visit, and the lower ones figure out how to track it 
successfully, a phenomenon beginning to be considered in engineered (i. 
e., non-biological) control systems (Merel, Botvinick, & Wayne, 2019). 

Cortical regions involved in skeletomotor control (e.g., primary 
motor cortex, premotor cortices, etc.) also send a copy of the downward- 
flowing reference signals to somatosensory cortices (called an efferent 
copy), thereby providing prior predictions to somatosensory regions. 
These “prior” signals literally change the firing of neurons in somato
sensory cortices, preparing them to receive incoming signals from the 
world based on upcoming skeletomotor movements. This dynamic takes 
place across all levels of the neural hierarchy, allowing the nervous 
system to use somatosensory prediction errors as feedback to confirm or 
correct movement performance; it also allows the nervous system to 
distinguish reafferent (self-caused) from exafferent (externally caused) 
sensory signals .13 Through this lens, the brain is considered to act as 
both a controller (in its visceromotor and skeletomotor functions) and a 
corresponding state estimator (in its perceptual and simulation func
tions). Since under the referent control hypothesis, skeletomotor 
“commands” take the form of descending signals specifying desired 
lengths and tensions for proprioceptive measurements, the brain’s state 
estimation machinery in sensory areas therefore can simulate the so
matosensory consequences of those descending control signals. 

The brain is hypothesized to exploit its internal model of both the 
body and the local external environment to predictively construct pop
ulations of reference trajectories as embodied simulations (Barsalou, 
2009). These simulated populations of referent trajectories can also be 
thought of as action concepts (Barrett & Finlay, 2018; Leshinskaya, 
Wurm, & Caramazza, 2020) (for similar ideas see also Wolpert, Pearson, 

Fig. 4. Functional block diagram of a 
model-based control system. The “plant” 
(orange) is the object or system whose 
motion or other behavior is controlled. 
The “controller” (purple) sends signals 
(“controls”, solid black arrows) that 
change how the plant moves, and signals 
the expected outcome (“predictions”, 
solid yellow arrow) to the “state esti
mator” (yellow). The task behavior of 
the plant is prescribed to the controller 
by an engineer or machine operator 
(transparent box), in the form of the 
reference signal (solid purple arrow). 
Measurements of the plant output 
(dashed yellow arrow) feed back to the 

state estimator to yield updated estimates (dashed purple arrow), which the controller compares to the reference signal to adjust the controls. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)   

Box 2 
Illustration by example. 

The dodgeball example illustrates the distinction between an unpredicted event and a disturbance. If a player looks across the field and sees a 
ball heading straight for her, her brain knows and predicts (by means of past experience) when and where the ball is likely to arrive. If she sees 
another player throw the ball, it will not be surprising (i.e., unpredicted) when the ball heads her way and hits her body. It will, nonetheless, be a 
disturbance; insofar as her brain estimated the movement of the ball and prepared her body to dodge, if she was unable to move fast enough, she 
deviated from her reference trajectory. By the same token, if a ball hits her from behind as she is standing still, her brain has made no estimate of 
its trajectory, nor has it prepared her body to dodge, but the hit remains a disturbance. For the same reason, if she positions herself in a way that 
enables her to catch, by luck or accident, a ball thrown at her, she has followed her reference trajectory, even though her brain will only register 
this after processing the ensuing prediction errors.  

13 See Straka, Simmers, & Chagnaud (2018) for a thorough review. 
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& Ghez (2013) and Hickok (2014)). In the brain, motor areas are hy
pothesized to implement feedforward control with action concepts by 
decompressing low-dimensional referent trajectories from higher in the 
neural hierarchy into higher-dimensional referent trajectories lower in 
the neural hierarchy .14 Decompressive prediction by the brain even
tually produces referent coordinates in the highest-dimensional, most 
redundant system of coordinates: references for individual peripheral 
stretch reflexes (Feldman, 2015). Each such stretch reflex circuit com
pares the ascending stimulus from its proprioceptor neuron to its cen
trally commanded reference, and activates its motoneuron to suppress 
the difference between the two. The motor system thus can be imagined 
as a hierarchy of controllers, with higher-level controllers specifying the 
reference signals for lower-level controllers as their output control sig
nals. In addition to converting signals from the conceptual reference 
frame of the behavioral task to the concrete reference frames of indi
vidual limbs and muscles, this hierarchical structure finesses neural 
signaling delays to provide fast, accurate control (Nakahira, Liu, Bernat, 
Sejnowski, & Doyle, 2019). Fig. 5 shows an elegant “outside-in” view15 

of the motor control problem, imagined along these lines. Here, an 
experimenter directs a participant to perform a task, who constructs an 
action concept from the instructions. This action concept seeds the 
construction of sensorimotor prediction populations in the skeletomotor 
decision controller. The skeletomotor controller further unpacks the 
action concept into an actual body posture and its attendant reference 
coordinates for muscles, as well as predictions for the somatosensory 
state estimator. The movements created by the reference coordinates are 
themselves are stabilized by fast proprioceptive feedback at the level of 
the individual stretch reflexes in the spinal cord. The hypothesis 
expressed by the figure assumes that all systems in the body, both 
somatomotor and visceromotor pathways, serve an externally driven 
behavioral task. 

However, the structure of a motor-control experiment has only 
limited overlap with the actual structure of motor control as it unfolds in 
the natural world. An experiment on reaching behaviors involves an 
experimenter prescribing the reaching task to their participants. A par
ticipant’s brain does not function specifically to follow instructions from 
an experimenter, but rather to regulate their own body. The actual or
ganization of the central nervous system accords better with an “inside- 
out” view16 of motor function: movement of the body (the somatomotor 
pathways) serves regulation of the body. For example, in a game of 
dodgeball, if you unexpectedly step hard on a sharp rock, you (usually) 
do not purposely impale yourself to stabilize your posture. Rather, you 
recoil in pain, and the unplanned disturbance of any tissue damage re
quires you to make a decision about what to do next: excuse yourself to 
nurse your foot, or play through the pain. 

This referent control hypothesis relies upon an important assump
tion: that once a higher-level controller specifies a reference for a lower- 
level controller, it can rely on that lower-level controller to successfully 
enact the desired movement. That lower-level controller stabilizes itself 
with measurements at a smaller spatial scale, and functions reactively 
rather than predictively. Neither do the lower-level control systems 
implemented by proprioceptors and motoneurons integrate information 
other than proprioception. The stretch reflex receives a signal specifying 
the referent length for the muscle, compares it to the proprioceptor’s 
signal of the muscle’s actual length, and fires the motoneurons to con
tract the muscle if the actual length exceeds the referent length (Box 3). 

3.3. Making decisions: constructing future reference trajectories 

So far control theory has been presented as it applies to physiology 

and motor neuroscience. These control mechanisms have largely been 
local, in the sense that they only drive neural outputs to impact a small, 
narrow domain: blood vessels and baroreceptors modulating autonomic 
outflow to reduce the heart rate; proprioceptors in individual muscle 
spindles driving the stretch reflex. In the stretch reflex, the reference is 
set by top-down signaling from the brain as part of voluntary movement, 
and therefore varies widely. The baroreflex displays a similar structure, 
receiving parameters for its capacity curve via central command. 

Reactive control requires reference signals before physiological 
needs are fully known. In contrast, the brain controls the body predic
tively, both viscerally and through overt somatomotor behavior. Pre
dictive neural control of the viscera must take into account biological 
processes that change the body (such as those occurring with develop
ment) and cyclical routines such as the wake-sleep cycle. The brain also 
must coordinate across a variety of physiological demands in the 
moment, each with its own capacity curve that may change over time. At 
the same time, the brain is subject to uncertainty from both sensory/ 
measurement noise and process noise in the innervated tissues. Decision 
making in the brain must therefore operate according to control prin
ciples that take into account competing demands over time. 

A control theory formulation meeting these criteria is stochastic 
optimal control (SOC). Stochastic optimal control uses probability dis
tributions over states x to model the effects of both process noise and 
measurement noise. The goal then is to optimize the probabilistic 
expectation of an objective function J summed over the indefinite 
future. This expectation of a sum, accounting for both uncertainty and 
time, is called the value function, and is defined recursively by the 
Bellman equation. A control strategy is optimal when it maximizes the 
value function. Since objective functions include terms that quantify the 
relative tolerance for regulatory error, it supports a wide variety of 
approximate solution methods to find “good enough” controls, which 
drive the plant close to its reference trajectory even when noise and 
disturbances prevent exact reference tracking. 

Objective functions generalize the simple comparators often used in 
classical control; they compare a reference state with an actual state to 
generate a real number as output. Generally the output value should be 
monotonically related to the degree of agreement or disagreement be
tween the reference and the actual state. Objective functions with a fixed 
notional reference state and a fixed tolerance for deviation from that 
state can model fixed physiological set-points and tolerances, like those 
found in homeostatic theories of regulation (Box 4). 

Stochastic optimal control, at first glance, might seem unnecessarily 
complex. Taking an expectation of a sum over time seems almost re
petitive: why should the brain not just wait until it arrives to a future 
bodily state, and then compare it to the corresponding reference using 
the objective function? This is, after all, precisely how reactive control 
mechanisms work. What problem is allostatic decision-making in the 
brain solving that a homeostatic reflex in the body cannot? Reflexive, 
reactive control under uncertainty carries a hidden assumption: that 
uncertainty in the moment is equivalent to uncertainty over time, and 
thus if control mechanisms can compensate for errors in the moment, 
they can compensate for all errors in the future. When that assumption 
holds, predictive and reactive control will be equivalent. When that 
assumption does not hold, stochastic optimal control can yield vastly 
better regulation than reactive control. 

That assumption is called ergodicity, and it amounts (very roughly) 
to modeling time as having no effect on probability distributions. B.1.1 
discusses ergodicity in detail, including its implications for experimental 
design. B.1.2 also discusses a paradigm for studying the brain as a whole 
that does assume ergodicity, allowing it to bridge perceptual processing 
with decision making and motor control. The following material places 
more emphasis on situations that are not ergodic, which include those 
with periodic structure, or with irreversible changes over time. Real life 
is filled with non-ergodic situations in which one must make decisions: 
the cycles of day and night (and circadian rhythms tracking them) are 
non-ergodic; processes of development (from childhood to adulthood) 

14 A finding discussed commonly in the predictive processing (Clark, 2015) 
and neuro-robotics (Barter & Yin, 2021) literatures.  
15 Language taken from Buzsáki (2019).  
16 Language again taken from Buzsáki (2019). 
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are non-ergodic; events like injury and death are non-ergodic. The brain 
accounts for these non-ergodic realities of life in decision-making pro
cesses (Mangalam & Kelty-Stephen, 2021). 

One final alternative way to think of SOC is in terms of what a 
controller needs to model, and which signals into a controller may be 
subject to noise or disturbance. In a typical control problem, the control 
engineer “trusts” that she can provide an exact reference signal, while 
building the controller to be robust to noise and disturbances in the 
plant. In SOC and RL, the control engineer may not be able to specify the 
reference signal exactly, but she can provide the controller with 
encouragement (rewards) or discouragement (costs) for following 
observed trajectories. “Rewards” thus count as evidence in favor of the 

plant’s recent behavior following the reference trajectory, while “costs” 
count as evidence for behavior deviating from the reference trajectory 
(Friston, Adams, & Montague, 2012). This implies that an optimal 
controller, viewed from the perspective of Fig. 4 or Fig. 5, has two 
sources of uncertainty that require two separate state-estimation pro
cesses: one for the state of the plant, and another for the reference signal. 
The next subsection will describe how interoception works alongside 
somatosensory perception to reduce both of these uncertainties. 

3.4. Allostatic control: Motivating movements with an interoceptive model 

The brain allostatically regulates the body. Accordingly, there ought 

Fig. 5. Functional block diagram for an experimental psychologist’s task-oriented view of motor control. The diagram shows a formal logical structure here, at a 
conceptual level; the boxes and arrows do not map onto the anatomy of the brain or nervous system. In contrast to Fig. 4, this diagram differentiates between 
skeletomotor (brain) and peripheral (stretch reflex) controllers and between sensory state estimators (brain) and peripheral sense organs (sensory surfaces). The 
diagram shows an engineering perspective on a psychology experiment, in which the experimenter prescribes a task or behavior to participants, and a participant’s 
brain then acts as control system to achieve the prescribed behavior. Systems that maintain the body therefore serve systems that move the body, which in turn serve 
a prescribed behavior. 

Box 3 
Terminology. 

The terms for directions of neural signaling, depending on the implied origin of the signal, are efferent, afferent, and reafferent. Motor neu
roscientists refer to efferent signals (flowing from somatomotor cortex down to somatosensory areas, the midbrain, and the peripheral nervous 
system) as feedforward signals. They then refer to afferent signals, particularly reafferent somatosensory signals, as feedback signals. Since the 
usage from motor neuroscience agrees with that from control theory, this paper follows that usage.  

Box 4 
Terminology. 

Predictive homeostasis is the hypothesized mode of regulation in which anticipatory decision-making mechanisms maintain regulated resources 
at fixed set-points with fixed tolerances. Neurally, a homeostatic regulator would consist of a comparator circuit without an incoming signal 
modulating its reference. Since most existing computational models of visceromotor control and interoception (e.g., (Petzschner et al., 2021; Gu 
& FitzGerald, 2014)) fall into this camp, we consider them to model allostasis as predictive homeostasis, designed for settings in which long-run 
set-points and tolerances define the chief control mechanism. This family of models includes certain active inference approaches (Pezzulo et al., 
2015, 2018; Corcoran, Pezzulo, & Hohwy, 2020) and homeostatic reinforcement learning (Keramati & Gutkin, 2014). Sometimes in stochastic 
optimal control, the objective function is not known a priori, and must be learned from samples. This special case is called reinforcement 
learning (abbreviated as RL). Neuroscientists have studied reinforcement learning (Sutton & Barto, 2018) as a model of how the brain might 
make decisions over time. Modeling midbrain phasic dopamine signaling with RL has led to a popular approach in computational neuroscience 
(the reward prediction error hypothesis (Niv, 2009; Colombo, 2014)), and continues to yield novel findings today (Lowet, Zheng, Matias, 
Drugowitsch, & Uchida, 2020). Notably, these successes rely on a specific way to approximate the value function for behavior over time by 
comparing predictions generated in the brain to the actual sensory effects of behavior.  
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to be a description of the brain in terms analogous to inferring capacity 
curves; these can be transformed into objective functions and projected 
into the future to construct a value function. This value function would 
allow the brain to take account of the future when deciding what to do 
now. When the value function successfully predicted instantaneous 
allostatic capacity curves, it would seem as if the future body prescribed 
a reference trajectory to the present brain. Since moving the body would 
predictably change allostatic capacities (i.e., operating points and tol
erances) in the future, a “circular causation” of self-organization and 
autonomy would emerge. Fig. 6 diagrams allostatic regulation using the 
language of control theory. This figure employs the same visual vocab
ulary of plants (orange), controllers (purple), internal models (yellow), 
feedforward signals (solid arrows), and feedback signals (dashed ar
rows) as the earlier Figs. 4 and 5. Systems that move the body are hy
pothesized to be in the service of systems that maintain the body (i.e., 
movement is in service of allostasis). 

Allostatic regulation contains homeostatic regulation as a special 
case. Allostasis consists of regulating a system’s state to track a reference 
trajectory, one which fully allows for system states to change over time. 
Homeostasis consists of regulating a system’s state towards reference 
points, independent of time. Thus, an allostatic controller can imple
ment homeostatic control by prescribing a reference trajectory as a 
single, unchanging point, while a homeostatic controller cannot imple
ment allostatic control. This is because homeostasis does not really deal 
with context. The allostatic trajectory approach allows for the possibility 
that past behaviors affect the present state and reference. It allows the 
effect of past perturbations or interoceptive conditions to influence what 
happens next (Box 5). 

Translating the example into the language of Fig. 6, the allostatic 
capacity estimator (yellow) signals the anticipated demand as a refer
ence trajectory (solid purple arrow) to the visceromotor decision 
controller. The visceromotor controller decompresses this low- 
dimensional reference trajectory into higher-dimensional reference 
trajectories (solid purple arrows) for the skeletomotor decision 
controller (purple) and peripheral reflex controllers (purple). Simulta
neously, the visceromotor decision controller sends efferent copies 
(downward solid yellow arrows) to the viscerosensory (“interoceptive”) 
and somatosensory exteroceptive state estimators (yellow) to generate 
sensory predictions (e.g., predict that the heart rate will be close to the 
reference). The skeletomotor controller decompresses its own reference 
trajectory into even higher-dimensional reference trajectories (solid 
purple arrow) for peripheral reflex controllers (purple); these convey 
motor signals about where your hands and feet should be, how bent your 
knees should be, etc. The skeletomotor controller also emits efferent 
copies to the somatosensory model, which generates sensory predictions 
regarding the sense data coming from sensory surfaces: the strain of 
bending the knees, the thump of the heart against the chest, and so on. 
Finally, the local reflex controllers enact motor controls (solid black 
arrow) that move the body. Basing sensory predictions on the efference 
copies enables the resultant measurements at the sensory surfaces 
(dotted yellow arrow) to generate sensory prediction errors (dotted 
yellow arrows), which serve as feedback on the timescale of tens or 
hundreds of milliseconds. This feedback flows through the state esti
mators to update their state estimates, and these estimates are then 
signalled to controllers as control feedback. At the far end, updates to 
interoceptive state estimates generate prediction errors that update the 
estimated allostatic capacities, thus closing the loop. 

3.5. Summary 

This section discussed three applications of control theory to study
ing the body and brain. Section 3.1 described control theory as a whole 
and discussed its applications in physiology, providing an example of a 
control system in Fig. 4. Section 3.2 then discussed the study of volun
tary motor control in the nervous system. The construct of reference 
trajectories in control theory finds a close analogue in the referent control 

hypothesis of somatomotor control, and its application in Fig. 5 shows an 
engineer’s view of motor control. Section 3.3 discussed the necessity for 
allostatic decision-making in the brain to take account of changing 
bodily conditions over time, constructing references based on physio
logical capacity curves. The next section will apply the concepts from 
this section to describe a formal model of allostatic regulation. 

Before diving into formal modeling details below, it might be helpful 
to compare and contrast the approach here with a prominent modeling 
framework: active inference (Friston, Daunizeau, Kilner, & Kiebel, 2010; 
Friston, Samothrakis, & Montague, 2012). Like many active inference 
models, the formal model below takes the form of information-theoretic 
model-predictive control (similar to work such as Williams, Drews, 
Goldfain, Rehg, & Theodorou (2018) and Nasiriany et al. (2021) in 
engineering) with a hierarchically-defined objective (similar to Smith, 
Thayer, Khalsa, & Lane (2017), Pezzulo et al. (2018)). Insofar as such 
efforts can be considered “active inference”, the formal model outlined 
in the next section is also an active inference model. Unlike most active 
inference models in the literature, however (with the exception of Mil
lidge (2020)), the material below considers an indefinite-time or 
“infinite horizon” control setting. Insofar as the research community 
prefers for the term “active inference” to refer specifically to formal 
models derived from the free energy principle (see B.1.2 and Kirchhoff, 
Parr, Palacios, Friston, & Kiverstein (2018)), with its ergodic assump
tions and its unique expected free energy objective, the formal model 
below is distinct from these traditional active inference models. 

4. Allostasis as trajectory-tracking stochastic optimal control 

The previous section overviewed and applied control theory to study 
physiological reflexes, voluntary motor movements, and decision mak
ing in the brain. The previous section described stochastic optimal 
control (SOC) theory as a mathematical formalism capable of flexibly 
modeling decision making under uncertainty. This section will describe 
our formal model of allostatic decision making: the Allostatic Path- 
Integral Control (APIC) model. APIC has a simple idea at its core: just 
as perceptual concepts serve as internal models of the body’s sensory 
surfaces (Barrett, 2017; Barrett & Finlay, 2018; Barsalou, 2009), action 
concepts also serve as internal models of potential behaviors and their 
predicted outcomes. The brain refines and selects sensory predictions 
derived from a concept based on their fit to past and present sensory 
evidence; we suggest that it likewise refines and selects the motoric 
reference configurations derived from an action concept based on their 
present and future allostatic value. Section 4.1 derives an SOC objective 
function from the mathematical form by which Section 2.2 represented 
capacity curves. Section 4.2 marshals behavioral and ecological evi
dence of how animals balance and meet their needs over time into a 
long-run mathematical form. Section 4.3 then sketches a formal model 
of how action concepts fit into SOC. Section 4.4 describes how to exploit 
action concepts optimally in feedback control. These last two sub
sections include the motivations for particular modeling choices. 

4.1. Transforming capacity curves into objective functions 

Section 3 pointed out that allostatic control poses a decision-making 
problem: the brain must predict the body’s future needs in the form of a 
reference trajectory or value function, and move to satisfy those needs 
before they become acute. This subsection presents a mathematical 
treatment of capacity curves as objective functions. The resulting 
objective functions have maxima at the operating points, and have 
slopes away from the maxima corresponding to tolerances for error. 
Since this derivation of objective functions applies to arbitrary capacity 
curves, it can be applied to model a variety of interoceptive modalities. 

Since any given capacity curve (such as the one in Fig. 1 above) 
reaches a maximum value on the vertical axis, it can be divided by its 
maximum Y-value to “normalize” it to range between zero and one. 
Once normalized in this way, it can be interpreted as a cumulative 
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distribution function (CDF) from probability theory. This is in fact pre
cisely what Srinivasan, Laughlin, & Dubs (1982) did to interpret the 
firing of retinal neurons in flies as a form of predictive coding (for an 
excellent example, see their Fig. 1). The derivative (instantaneous slope) 
of a CDF yields a probability density function (PDF). This is the more 
familiar way of representing a probability distribution, where height on 
the vertical axis corresponds to likelihood, but for a PDF derived from a 
capacity curve, it represents relative responsiveness to perturbation. We 
will call such a distribution a reference distribution. Fig. 7 therefore 
shows the result of normalizing and differentiating the capacity curve in 
Fig. 2 to obtain its corresponding PDF. The density function’s graph 
clearly shows that the baroreflex’s capacity to adapt to changes in mean 
arterial pressure (MAP) degrades the further MAP moves from the peak 
at 100 mmHg. The rate at which it degrades, and the response elicited, is 
governed by the baroreflex gain. The gain of a capacity curve thereby 
defines the relative importance of deviations from the operating point, 
and thus corresponds neatly to precision in predictive coding. The 
greater the baroreflex gain, the more sharply curved the PDF around its 
operating point, and the greater the response mobilized by any deviation 
from the operating point. Section 2.3 described how the capacity curves 
in settling-point physiological controllers will often have inflection 
points that lie somewhere other than the center, thus being horizontally 
asymmetrical. This property translates neatly to probability densities: 
PDF’s need not be horizontally symmetrical either. Bodily responses 
such as inflammation or nociception could have highly asymmetrical 

capacity curves, with the operating point even potentially being located 
near a zero value of the PDF. 

For analytical convenience, we take the practice from Todorov 
(2006) of using a log-density (the logarithm of a PDF) as an objective 

Fig. 6. Functional block diagram for a control-theoretic view of allostasis. In contrast to Fig. 5, this diagram shows a closed-loop control system design for 
autonomous regulation of the body. An experimenter’s desired “task behavior” is replaced by the allostatic capacity estimator, which sends predictions of capacity 
curves to the interoceptive state estimator and receives prediction errors with which to update its estimates. The updated estimates are issued as a reference signal to 
the visceromotor controller. This diagram shows a formal logical structure, at a conceptual level; the hypothesis depicted is constrained by the inferred anatomical 
structures in Barrett (2017) but the boxes and arrows do not map one-to-one onto the anatomy of the brain or nervous system (Lee, Ferreira-Santos, & Satpute, 2021). 

Box 5 
Illustration by example. 

A return to the dodgeball example will ground these ideas. During a game of dodgeball, muscles will demand greater amounts of oxygen and 
glucose than they had needed during rest. Successfully throwing the ball at an opposing player will require mobilizing both the skeletomotor 
musculature (“soma”, plant) as well as the internal bodily systems such as the cardiovascular system (“viscera”, plant) across a timescale of tens 
of seconds to minutes via the visceromotor and somatomotor controllers (purple). We hypothesize that a functional equivalent to an allostatic 
capacity estimator (yellow) anticipates the need, altering the reference trajectory conveyed as a prediction to the visceromotor controller 
(purple). The visceromotor controller must then mobilize the cardiovascular system to supply those metabolic necessities via the blood. In this 
instance, among other adjustments, the visceromotor controller shifts and flattens the baroreflex’s capacity curve (Dicarlo & Bishop, 1992), 
allowing both vasoconstriction and an increased heart rate to work in tandem to supply more blood flow to the muscles.  

Fig. 7. The probability density function (PDF) corresponding to the capacity 
curve shown in Fig. 1, with the tick-marks delineating threshold (left) and 
saturation (right) values. Probability density here corresponds to responsive
ness to perturbation, not to an empirical frequency of events. 
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function, rather than the PDF itself. The operating point then continues 
to appear as a local maximum, while the gain determines the cost of 
movement away from the operating point, or the value of movement 
towards it. Fig. 8 shows the objective function (log-density) corre
sponding to the original baroreflex capacity curve, and the formal model 
below will use such log-densities as objective functions for optimal 
control. Fig. 9 further clarifies the relationship between the various 
forms of capacity curve by showing all three alongside each-other. 
Assuming that the brain’s internal model takes the form of a genera
tive model (here with discrete time), the internal states of this generative 
model can be numbered as xt for natural numbers (that is, discrete 
counting numbers) t ∈ N, with some number L of levels of model hier
archy. We will later define a specific graphical model that suits these 
notations. 

We define the PDF corresponding to a physiological capacity curve as 
the reference distribution for the value on the horizontal axis of the PDF. 
These reference distributions have parameters, which we name ρ(0:L− 1)

t , 
and p(xt; ρ(0:L− 1)

t ) denotes their PDF’s. logp(xt ; ρ(0:L− 1)
t ) will denote the 

corresponding log-density objectives. 
Our allostatic decision-making model focuses on optimizing a 

construct called the instantaneous capture rate (given informally in Eq. 
(5)), which we write as J(xt, xt− 1). Since the model here works with 
discrete time steps, the instantaneous capture rate is defined as a func
tion of the transition between one time-step and another. The instan
taneous capture rate consists of a rate of resource intake minus a rate of 
effort expenditure. We suggest that we can identify the instantaneous 
capture rate with a rate of movement along capacity curves, which we 
will write mathematically below in Eq. (6). 

J(xt, xt− 1) = Intake(xt, xt− 1) − Effort(xt, xt− 1). (5)  

The single-step capture rate is formalized as 

J(xt, xt− 1) = logp(xt; ρ(0:L− 1)
t ) − logp(xt− 1; ρ(0:L− 1)

t− 1 ). (6)  

Eq. (6) shows the difference between the log-density objective across 
two consecutive time steps. Since the reference distributions defining 
the log-density terms (at the lowest level, ρ(0)

t ) correspond to physio
logical capacity curves, movement towards an operating point will 
contribute positively to this equation, while movement away from an 
operating point will contribute negatively. Increases in responsiveness 
of controlled processes that handle metabolic inflow (such as glucagon) 
can be interpreted as “intake”, while decreases in responsiveness of 
controlled process that handle metabolic outflow (such as insulin) can 

be interpreted as “effort”. Section 4.2 below will present evidence for 
how the instantaneous capture rate is aggregated over time in foraging 
behaviors, particularly in feeding behaviors and the energetic efforts 
undertaken to enact them. 

4.2. Optimal foraging theory suggests a functional form for allostatic 
control 

Mathematically, combining momentary reference signals into a 
value function requires first writing those reference signals as objective 
functions, and then combining them into a long-run functional form. The 
subsection above derived a form of objective function that expresses 
movement towards and away from the operating point of a capacity 
curve. This subsection will identify a long-run functional form for allo
static decision-making that is based upon experimental findings. 

Neural and ecological evidence supports the hypothesis that animals’ 
intake and outflow optimize a long-run functional form called the global 
capture rate (Stephens & Krebs, 2019; Shadmehr & Ahmed, 2020). 
Ecologists such as Stephens & Krebs (2019) define the global capture 
rate J as the sum of all metabolic intake minus all effort expended, over 
the total time devoted to a behavior. Meanwhile, neuroscientists have 
used the global capture rate to help relate dopaminergic neuronal 
signaling (Kobayashi & Schultz, 2008) and animal behavior (Daw & 
Touretzky, 2000) to the discounting of rewards in decision-making 
tasks. 

This formalism assumes a given behavior has a finite length in time 
of T, and that all intakes and efforts are zero at time t = 0. The global 
capture rate is then written 

J(x1:T) =

∑T
t=1J(xt, xt− 1)

T
. (7)  

The global capture rate is thus the average over time of the individual 
“intake minus effort” instantaneous capture rates of Eq. (6) (Shadmehr, 
Huang, & Ahmed, 2016). Since the global capture rate is defined by 
dividing by time, it exists for any length of time, long or short. In the real 
world, intakes or rewards often only accrue at the conclusion of a 
behavioral episode, while efforts or costs necessarily accrue throughout 
the behavior as energy is spent. Averaging over time treats rewards and 
costs equally whenever they occur during a behavioral episode. The 
global capture rate helps make behaviors commensurable, even when 
they take different lengths of time or accumulate rewards at different 
points in time. 

Defining the global capture rate with respect to an internal model p 
(x1:T∣T) entails generating trajectories of length T, conditioned upon an 
initial state x0 as context, 

J̃(x0) = lim
T→∞

Ep(x1:T |x0)

[
1
T
∑T

t=1
J(xt, xt− 1)

]

. (8)  

This is an indefinite-time form of the global capture rate that generalizes 
Eq. (7) from settings with a known beginning and end to arbitrarily long 
time scales. 

4.3. Feedforward control with generative action concepts 

This subsection will consider a formal model in discrete time, with 
arbitrary state-spaces and sensory observations. Specifically, we write 
sensory observations as indexed by discrete timesteps, t in ot, and do 
similarly for other variables. The formal model here incorporates the 
hypothesis that the brain’s internal model stretches across a hierarchy of 
time-scales (Kiebel, Daunizeau, & Friston, 2008). However, we restrict 
our description to L = 4 hierarchical “levels” (matching the sensory 
surfaces, somatosensory and exteroceptive state estimators, interocep
tive state estimators, and allostatic capacity estimators in Fig. 6). We do 
not hypothesize a one-to-one mapping between functional structure and 

Fig. 8. Logarithm of the probability density shown in Fig. 7, with the operating 
point shown as a diamond marker and tick-marks delineating threshold (left) 
and saturation (right) values. Probability density here corresponds to respon
siveness to perturbation. 
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neuroanatomy, and so the structure we have given here may not match 
neuroanatomy – but, the graphical model is formulated with an eye to 
keeping it consistent with the biological details of allostasis. We consider 
it a first attempt to build a functionally coherent model that can then be 
critiqued and refined to match anatomical and empirical evidence. 

The complete state of the generative model at a specific timestep t is 
written symbolically as 

xt = (ot, s(1:L)t , at, ρ(0:L− 1)
t ), (9)  

under the assumption that outcomes ot are observed, latent states s(1:L)t 

track the unobservable state of the body, and ρ(0:L− 1)
t parameterize 

reference distributions used below in Eq. (6). ρ(0)t (as above) parame
terizes a reference distribution for ot, and at models the closed-loop 
control action of motor reflexes; ρ(1:L− 1)

t parameterize reference distri
butions for s(1:L)t respectively. s(L)t , as the highest level latent state, has no 
reference distribution. The factorization of control into hierarchical 
levels ρ(0:L− 1)

t is based upon the referent-configuration control scheme 
from Section 3.2, so as to match as closely as possible what is known 
about somatomotor control. 

A behavioral trajectory is written as contextualized by (conditioned 
upon) an initial state x0. This initial state corresponds to the beginning of 
a behavioral episode, within which interoceptive outcomes will be 

considered commensurable. The following states from time 1 until time 
T, sampled from a generative model pθ with parameters θ, are then 
written as 

x1:T ∼ pθ(x1:T |x0), (10)  

J ≈
1
T

∑T

t=1
J(xt, xt− 1), (11)  

along with the corresponding approximate global capture rate. The in
ternal model simulates a population of potential behavioral trajectories 
x1:T, and uses them to estimate the global capture rate J for the simu
lated behavior. This quantity will play a role in the feedback control 
formalism described later. Fig. 10 summarizes the proposed model 
structure as a probabilistic graphical model,17 with L = 4 for purposes of 
exposition. 

Table 1 summarizes the key notations, including the random- 
variable names and time indices. C.1.1 specifies the various distribu
tions for our graphical model and control problem in detail. 

We do not claim that our graphical model accurately captures the 
anatomy of the brain (or the function of the entire brain). It captures 

Fig. 9. The complete set of functions employed to model the baroreflex response. The second comes from taking the derivative of the first and normalizing it, and the 
third comes from taking the logarithm of the second. 

17 For a primer on graphical models see Koller & Friedman (2009)). 
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reference-based sensorimotor control across a hierarchy of timescales, a 
single feature shared with the brain (Kiebel et al., 2008). There can be no 
one-to-one mapping between computational theories and neuroana
tomical findings (Edelman & Gally, 2001; Friston & Price, 2003). We 
instead account here for what we already know about the brain that goes 
into our model, without assuming any one-to-one mapping of brain 
structure and function. In the actual brain, the hierarchy of timescales is 
also a hierarchy of dimensionalities: information is more concrete and 
higher-dimensional at the bottom of the hierarchy, more abstract and 
lower-dimensional at the top (Finlay & Uchiyama, 2015). Dimension
ality reduction up the hierarchy entails compression up the hierarchy, so 
that state estimates in the higher-level variables have greater precision. 
Evidence from machine learning shows that learning to control a system 
in terms of a low-dimensional compressed representation (also called a 
“latent space”) provides greater performance with fewer episodes of 
experience compared to controlling the same system in terms of its raw 
measurements (Watter, Springenberg, Boedecker, & Riedmiller, 2015; 
Chua, Calandra, McAllister, & Levine, 2018; Becker-Ehmck, Karl, Peters, 
& van der Smagt, 2020). Since the visceromotor, premotor, and motor 

cortical areas that implement action concepts employ low-dimensional, 
compressed multimodal summaries rather than raw measurements 
(Satpute & Lindquist, 2019), we conjecture that they may benefit from 
the sample efficiency of latent-space control approaches. Finally, 
computational modeling has been directly applied in experiments that 
supported the presence of hierarchical Bayesian models in interoception 
Smith et al. (2020); Smith, Kuplicki, Teed, Upshaw, & Khalsa (2020); 
Harrison et al. (2021) (Box 6). 

Stochastic optimal control with a generative model requires (by 
definition) solving or approximating the recursive optimization problem 
called the Bellman equation. For a time-averaged problem, the Bellman 
equation will contain a term for the objective function J(xxt , xxt− 1 ) at a 
particular state, a term J(x0) for the (estimated) global capture rate of a 
behavior as a whole, and a recursive term. It is written as a definition of 
the optimal value function 

Ṽ ∗ (xt, xt− 1) = J(xt, xt− 1) − J(x0) + max
pθ

Ext+1∼pθ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)]. (12)  

However, this formalism only describes how to plan optimal behavior or 
learn an optimal policy (a mapping from states to actions) through 
forward simulation. This equation does not describe how to integrate 
afferent sensory information as control feedback; it also imposes the 
great computational difficulty of finding exact solutions to a recursive 
optimization problem. The following subsection will discuss a way to 
tackle both of these limitations, yielding a more neurally plausible form 
of stochastic optimal control. 

4.4. Feedback control with generative action concepts 

Standard theories of optimal decision-making ignore the variability 
of choice outcomes, while evidence shows that human behavior takes 
the level of risk into account (Braun, Nagengast, & Wolpert, 2011; Niv, 
Edlund, Dayan, & O’Doherty, 2012). This makes normative sense from 
the perspective of embodied action: the brain has to transform even 
seemingly clear and simple decisions (“reach to the left”) into noisy, 
high-dimensional motor movements (“change these and those muscle 
spindles’ referent lengths and sensitivities”). Risk and uncertainty 
remain part of a movement even once the body has actually enacted it, 
since the distal body and world remain only partially observable via the 
sensory surfaces. This subsection will consider what these facts imply for 
the combined problem of decision-making and motor control faced by 
the brain. After these considerations, this subsection will give a com
bined formulation of risk-sensitive decision making and 
feedback-stabilized motor control. 

Neural firing contains stochastic noise (Faisal, Selen, & Wolpert, 
2008), and so finding an exact maximum of a difficult recursive problem 
quickly seems implausible. Even if the brain could find the exact 
maximum quickly, noise in the motor system imposes its own cost fac
tors into the decision value (Manohar et al., 2015). Experimentally, 
human and animal behavior show meaningful variability (Gallivan, 
Chapman, Wolpert, & Flanagan, 2018) across every level of task 
behavior, while Eq. (12) says that any given task ought to correspond to 
a unique optimal way to act. Behavior also displays meaningful varia
tion attributable to predictive uncertainty in people’s internal models, 
both about the task goals themselves (McBeath, Shaffer, & Kaiser, 1995) 
and about appropriate sensorimotor strategies (Scholz & Schoner, 
1999). A risk-neutral theory can explain neither of these effects, since 
the Bellman equation uses expectations to average away model-based 
uncertainty. 

In fact, when sensory signals carry only partial and ambiguous in
formation about the state of the body and environment (as they always 
do in the real world), Eq. (12) will have to be solved anew every time an 
xt is updated based upon sensory feedback. This is because the equation 
does not take into account the difference between planning ahead with a 
forward model and feedback control based on reafferent sensory signals. 

Fig. 10. A hierarchical generative model capturing multiple timescales and 
reference distributions at each level. Without addressing empirical questions 
about neural hierarchies, here we employ a model with L = 4 levels to match 
Fig. 6. For l ∈ [1. . L − 1] each s(l)t node denotes an unobserved latent state, and 
each ρ(l− 1)

t represents parameters of a reference distribution for s(l− 1)
t . ot rep

resents observed sensory outcomes, and at represents the closed-loop control 
actions generated by motor reflexes. Arrows between random variables denote 
conditional dependencies. Arrows stretch further to the right when they denote 
change over longer time scales. 

Table 1 
Random variable names used in our APIC model.  

t Discrete time-step index 

ot Sensory observations (external and visceral) 
s(1:L)t  

Unobserved states constructed by the internal model 

ρ(0:L− 1)
t  

Parameters to a reference distribution 

at Control actions emitted by peripheral reflexes 
xt A complete model state for time t 
pθ Feedforward generative model with parameters θ 
qϕ Feedback generative model with parameters ϕ  

E. Sennesh et al.                                                                                                                                                                                                                                 



Biological Psychology 167 (2022) 108242

17

Here we propose instead a feedback-control formalism which takes 
this difference into account. This formalism quantifies the deviation of 
the closed-loop, feedback-stabilized behavior from the open-loop, 
feedforward action concept. It balances this deviation with the present 
and future allostatic value of an online behavior to determine what to 
do. The formalism begins by updating the state estimate for each time- 
step t as the sensory signals ot become available. A probability model 
qϕ with parameters ϕ, conditioned upon the sensory observations and 
initial state, then acts as a feedback controller18 in updating state esti
mates and motor references 

x1:T ∼ qϕ(s(1:L)1:T , ρ(0:L− 1)
1:T

⃒
⃒
⃒o1:T , x0). (13)  

The updated state estimates, being based upon the observations ot, may 
significantly differ from the state estimates emitted by the feedforward 
action concept. This deviation imposes a penalty term in the objective 
function, called an information divergence (specifically, the Kullback- 
Leibler or KL divergence). The resulting function 

J (xt, xt− 1) = J(xt, xt− 1) − DKL
(
qϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
, (14)  

trades off between the allostatic responsiveness objective of Eq. (6) and 
adherance to the “planned” population of predictions given by the 
feedforward action concept. The first term measures success at physio
logical regulation, while the second term penalizes the feedback 
controller qϕ for deviating from the action concept pθ or suffering sen
sory prediction errors. When movements result in sensory outcomes 
very close to those predicted under the feedforward action concept pθ, a 
low information divergence, that action concept can be considered 
robust in the face of sensory feedback. 

Readers familiar with predictive processing (Friston & Kiebel, 2009; 
Clark, 2013; Bogacz, 2017) and active inference (Friston et al., 2010; 
Ramstead et al., 2020) will recognize the form of the above equation as a 
negative free-energy or a variational lower bound (see Millidge, 
Tschantz, & Buckley (2021) for discussion on the variety of such 
bounds). Such objectives can typically be written out and interpreted in 
several equivalent ways, each of which can come with its own intuitions. 
There are arguments for the computational (Chatterjee & Diaconis, 
2018) and thermodynamic (Still, Sivak, Bell, & Crooks, 2012) efficiency 
of minimizing this specific divergence in the course of neural processing, 
but to date the available evidence does not rule out other, more complex 
information divergences for penalizing feedback correction of 
movements. 

The long-run value function (Eq. (12)) for a control problem can be 
used to derive an equation for the optimal feedback controller. By 
treating the pre-planned action concept as a kind of probabilistic “prior 
belief” about the behavioral trajectory and the decision-value of the 
behavior as a “likelihood function” linking the action concept to the 
objective function in Eq. (14), Bayes’ rule (see Appendix C.1 for details) 
will yield the optimal feedback controller: 

q∗ϕ(xt+1|xt) =
exp(Ṽ ∗ (xt+1, xt))pθ(xt+1|xt)

Ext+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ]
. (15)  

Eq. (15) links pre-planned action concepts (the “priors” pθ(xt+1∣xt)) to 
online feedback (the “likelihood” exp(Ṽ ∗ (xt+1, xt))) in a probabilisti
cally optimal way (by treating them both as densities, multiplying, and 
normalizing the result). A system that can represent and simulate from 
this equation can (approximately) predict the way that an “optimal 
agent” (with the assumed objective function) ought to move. 

Taking a generative modeling perspective, the controller defined in 
Eq. (15) treats the original action concept pθ as a prior, and conditions on 
the long-run value of the potential future state xt+1 as a selection cri
terion. It is therefore risk-sensitive and information-seeking. The term 
that would typically correspond to model evidence now corresponds to 
the expected exponentiated decision value of the present state xt. 

Substituting the augmented objective (J , Eq. (14)) and the analyt
ical expression for the optimal feedback controller (above, Eq. (15)) into 
the Bellman equation (Eq. (12)) will yield 

Ṽ ∗ (xt, xt− 1) = J (xt, xt− 1) − J(x0) + Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)]. (16)  

Now the intractable recursive term in the equation is 
Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)]. Finding a way to replace this term will yield a 
more (computationally) tractable problem. The information divergence 
term in J provides just such a way, since it can be written as precisely 
the difference between the intractable “hard” maximum under q*ϕ and 
the more tractable “smooth maximum” under the preplanned action 
concept. In symbols 

− DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
= − Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)]

+ logEpθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ],

(17)  

and so the penalty’s first term, when substituted into Eq. (16), will 
cancel the intractable recursion. Only the second term of the penalty will 
remain, yielding a smooth maximization problem across whole action 
trajectories. The equation can then be solved (once again, see Appendix 
C.1 for details) to write the value function without recursion as 

Ṽ ∗ (x0) = logEq∗ϕ(x1:T |x0)

[

exp

(
∑T

t=1
J (xt, xt− 1) − J(x0)

)]

, (18)  

= logEpθ(x1:T |x0)

[

exp

(
∑T

t=1
J(xt, xt− 1) − J(x0)

)]

. (19)  

This function contains an exponentiated sum over timesteps, where each 
timestep’s addend has the form of an advantage function, 

A(xt, xt− 1; x0) = J (xt, xt− 1) − J(x0). (20)  

This measures the relative decision value of transitioning into state xt 

relative to an estimated global capture rate J(x0) for the initial context 
x0. Viewed another way, it measures how well the ongoing feedback- 

Box 6 
Terminology. 

The language of generative models in the brain is typically used in the context of predictive processing approaches to brain function. These 
approaches typically label as a “generative” model the processes producing efferent signals in sensory areas of the cortex, while suggesting that 
the processing of reafferent signaling in those same areas encodes a “recognition” model (Ramstead, Kirchhoff, & Friston, 2020). The efferent 
and reafferent signals themselves are typically then labeled “predictions” and “prediction errors”. We will continue to use “feedforward” for 
efferent signals (or computations) and “feedback” for reafferent signals (or computations).  

18 Or equivalently within this context, an approximate posterior distribution 
over actions 
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controlled behavior has performed, relative to the predicted average for 
the prior action concept (Box 7). 

Jensen’s inequality, commonly employed in predictive processing, 
allows moving the logarithm inside the expectation, at the cost of 
yielding a lower bound to the optimal value function rather than an 
expression for it. Doing so cancels the exponential function inside the 
expectation. The lower bound is written in terms of an arbitrary feed
back controller qϕ and the sum of advantage values obtained over the 
course of the behavior, 

Ṽ ∗θ,ϕ = Eqϕ(x1:T |x0)

[
∑T

t=1
A(xt, xt− 1; x0)

]

≤ Ṽ ∗ (x0). (21)  

It may seem obvious that any behavioral returns are less than or equal to 
the best possible returns. The implication of having a proper lower 
bound, however, is that any process for maximizing the value lower 
bound Ṽ ∗θ,ϕ does in fact maximize the optimal value function Ṽ ∗ (x0)

by proxy. This includes the kind of computations19 which predictive 
processing theorists posit the brain can in fact perform (Bastos et al., 
2012; Bogacz, 2017) to incrementally improve its action concepts pθ and 
its feedback controllers qϕ. 

This concludes the description of the Allostatic Path-Integral Control 
(APIC) model. Since APIC employs action concepts and context states x0, 
it only requires planning and adjusting behavior in context (e.g. from 
timesteps 1 to T), despite optimizing a “global” (indefinite) capture rate 
(Eq. (8)). Since it employs “smooth” maximization rather than a “hard” 
recursive maximization, it can accommodate the sensitivity of behavior 
to risk. APIC follows in the tradition of modelers such as Belousov, 
Neumann, Rothkopf, & Peters (2016), Mitchell et al. (2019), and Piray & 
Daw (2019), who consider the specific problem of making embodied 
decisions when sensory feedback contains noise and a ground-truth 
model of task dynamics is not available. 

Summary 
This subsection has detailed a formal model, called the Allostatic 

Path-Integral Control (APIC) model, for how the brain can realistically 
achieve allostatic regulation of the body in an online setting. APIC as
sumes that the brain starts with an action concept describing a potential 
behavior, and tries to maximize the allostatic returns on that behavior 
while keeping the online (feedback-stabilized) behavior close to the 
original plan. Incorporating an action concept, and penalizing deviation 
from it, provides an explicit expression for the optimal feedback 
controller. The infinite-horizon, average-objective setting for this sto
chastic optimal control model captures the time-averaging behind the 
global capture rate (i.e. Eq. (7)). This model can take advantage of 
neural stochasticity to optimize an objective function defined over a 
hierarchy of scales of space and time, allowing for both high-level and 
low-level behavioral control. 

4.5. Summary 

This section derived an objective function, formal problem setting, 
and formalism for allostatic control based upon the paradigm of path- 
integral control. Section 4.1 connected physiology’s ever-shifting ca
pacity curves (such as Fig. 1) to probability density functions (shown in 
Fig. 7), and used that connection to define an objective function. Section 
4.2 described a problem setting for decision making that accounts for 
much available evidence about how animals make allostatic decisions in 
ecological settings. Section 4.3 then sketched the formal definitions 
needed to apply path-integral control to a generative model; gave a 
generative model (Fig. 10) with the hierarchical structure that the 
literature suggests is found in the brain; and derived a stochastic optimal 

control formalism based on simulations of potential futures by an in
ternal model. Section 4.4 then shifted the perspective to feedback con
trol, obtaining a risk-sensitive and tractable formalism. 

The next section will conclude the paper by discussing the implica
tions of applying stochastic optimal control theory to allostatic physio
logical regulation in general, and the specific hypotheses for the brain 
implied by APIC. 

5. Discussion: Interoception stabilizes action and constructs 
allostatic references 

If the brain is an allostatic regulator, then its most basic task is to 
anticipate the body’s physiological needs and prepare to meet them 
before they arise. This paper provided a unified interpretation of allo
stasis in terms of brain-body interaction and neural computations. This 
unified interpretation is built around stable circular interactions be
tween the brain and body, and control theory has provided language 
with which to describe the mechanisms stabilizing those interactions. 

Each section of this paper addressed a particular circular interaction, 
and below we connect each with its implications for psychological 
investigation. Section 5.1 will discuss what the Allostatic Path-Integral 
Control (APIC) model in Section 4 implies about brain function. Sec
tion 5.2 will discuss what control theory brought to the study of physi
ology, motor control, and allostatic decision-making (with reference to 
Section 3). Section 5.3 will discuss interoception and capacity curves in 
light of Section 2’s overview of interoception. Each subsection will end 
with a paragraph giving specific predictions made by our view of allo
stasis in the brain and body. 

5.1. Viewing the brain as an allostatic optimal controller 

The Allostatic Path-Integral Control (APIC) model in Section 4 im
plies a number of specific hypotheses, beyond those generic to stochastic 
optimal control. This subsection will situate those commitments within 
the broader literature on formal modeling of motor and decision func
tions. We will first describe commitments shared with other modeling 
approaches, then describe less common commitments, and finally we 
will describe several commitments that are unique to the APIC model. 

On the theoretical side, the APIC model shares a number of modeling 
choices with active inference models, perhaps enough for APIC to be 
considered an active inference model of sorts. APIC employs (normal
ized) probability densities as its objective function to provide a “com
mon currency” for different “rewards” and “costs” (Friston et al., 2015; 
Morville et al., 2018; Allen, Levy, Parr, & Friston, 2019; Kobayashi & 
Hsu, 2019; Millidge et al., 2021; Tschantz et al., 2021). As in active 
inference models based on the free-energy principle (such as Stephan 
et al. (2016)), the objective in our APIC model is a function of (among 
other things) precision terms, which specify the relative worth of a 
change in one variable versus another. APIC and active inference both 
optimize motor behaviors via a variational lower bound on a long-run 
objective, and APIC is likely compatible with the neural process the
ories (Friston, Fitzgerald, Rigoli, Schwartenbeck, & Pezzulo, 2017) that 
have been forwarded to ground active inference in the brain. These 
commitments place APIC alongside active inference, in contrast to most 
reinforcement learning models of decision-making (e.g., Niv (2009)). 

APIC also shares a number of features common to other predictive 
processing paradigms, beyond active inference. Most importantly, it 
uses a probabilistic, generative internal model. There is a broad family of 
predictive processing approaches to neural function, and a proposal for a 
neural implementation for APIC could depend on the neurocomputa
tional details of any of them (e.g. Boerlin, Machens, & Deneve (2013), 
Spratling (2017), Kadmon, Timcheck, & Ganguli (2020)). These details 
are beyond the present scope, but, some important features can be 
highlighted. Predictive processing models must construct potential 
bodily movements from some distribution of possibilities, and neural 
evidence (Gallivan, Logan, Wolpert, & Flanagan, 2016; Barrett, Quigley, 19 Gradient updates, to be precise. 
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& Hamilton, 2016) suggests that neural representations may not sum
marize probability distributions in a small, fixed number of parameters. 
Therefore, to understand how movements are constructed, we must 
understand the entire distribution, and not just its summary statistics. 
APIC can accommodate this, and is therefore compatible with neural 
process theories of predictive processing not based on sufficient 
statistics.20 

Unlike most work in predictive processing, APIC is designed from 
first principles to solve a combined problem of both decision making and 
motor control, rather than to address perceptual or cognitive prob
lems.21 Unlike other predictive processing models, in APIC the objective 
is optimized by making capacity curve precisions small (implying 
greater resilience to challenge) rather than large (implying reduced 
resilience to challenge). The most elementary of the APIC model’s first 
principles are: the body, when considered as a set of coordinated sys
tems, can only perform one action at a time, whereas the brain can 
imagine many possible actions. The study of embodied decision-making 
in neuroscience begins from these assumptions (Pezzulo & Cisek, 2016) 
and an emerging body of evidence suggests that the brain controls the 
body by keeping many possible actions “in the running” until sensory 
feedback forces an irreversible decision (Cisek, 2007; Cisek & Kalaska, 
2010; Buzsaki, 2019; Cisek, 2019). The APIC model works this way by 
default, thanks to its roots in path-integral control (Kappen, 2005). 

Finally, the APIC model implies some hypotheses that are (to our 
knowledge) unique. These derive largely from the APIC model’s com
bination of the neuroanatomy of Barrett (2017) and the feedback control 
formalism of Thijssen & Kappen (2015). Active inference modeling 
typically interprets qϕ as an approximate posterior belief. APIC 
re-conceptualizes qϕ as a feedback controller. This interpretation comes 
from the path-integral control (PIC) literature (Thijssen & Kappen, 
2015; Kappen & Ruiz, 2016; Menchon & Kappen, 2019), whereby the 
same mechanism can both stabilize movements (keeping qϕ close to the 
original action concept pθ) and maximize decision value. APIC’s unifi
cation of inference with feedback control handles uncertainty about the 
consequences of movements (optimal feedback control); uncertainty 
about the state of the body and the world (predictive processing); and 
uncertainty about the reference or objective of action (reinforcement 
learning) in a single framework. The first term of APIC’s objective 
function is physiological: it represents the responsiveness of controlled 
processes in the body, as inferred through interoception. The second 
term of APIC’s objective function separately quantifies the difference 
between planned and actual movements (including visceromotor 
movements). 

How would an implementation of APIC map onto the brain? We did 
not map functional descriptions in control theory terms to specific 
anatomic or functional assemblies in the brain, but nevertheless, 
research does suggest that brain systems can be described as enacting 
internal modeling, feedback control, and decision making. For example, 
the hippocampal-entorhinal complex is often considered to construct a 
predictive “cognitive map” (Stachenfeld, Botvinick, & Gershman, 2017) 
out of sequential episodes (Buzsaki & Tingley, 2018), which helps 
evaluate a value function for a control problem (Daw, Gershman, 

Momennejad, Russek, & Botvinick, 2017). The cerebellum may help 
exploit reafferent and exafferent sensory prediction errors as online 
corrective feedback for movements (Wolpert, Miall, & Kawato, 1998; 
Hull, 2020), although the role of the cerebellum in visceromotor control 
requires more study to understand the mechanisms involved. Regions in 
the brain’s default mode network are thought to help construct state 
estimates (e.g., Buckner (2012), Barrett (2017)) and implement allo
static control (Kleckner et al., 2017). Evidence for common functional 
gradients across the cerebral cortex, cerebellum, and hippocampus 
suggests that future empirical studies should apply common computa
tional paradigms to different brain regions (Katsumi et al., 2021). 

Predictions 
The APIC objective function proposes a theory of how behavioral 

reinforcement and allostatic control interact. This theory has implica
tions for how a primary (unlearned) reinforcer would arise. According to 
APIC, a primary reinforcer arises when the dynamics of a controlled 
physiological process align with those of its capacity curve (as a function 
of an underlying regulated resource). If a primary reinforcer arose 
directly from a regulated resource, then the specific objective-function 
formulation we have suggested would be falsified; however, this 
would not necessarily falsify APIC as a computational unification of 
decision making and motor control for action concepts. Likewise, only 
the objective-function would be falsified if future work identified a 
modular“reward” or reinforcement systems in the brain-i.e. a reward 
system that operates separately from decision making and motor con
trol. Alternatively, empirical tests for controlled variables (Marken 
et al., 2001; Yin, 2013) could determine which physiological parameters 
(if any) elicit global, behavioral responses to disturbance. 

5.2. The body and brain through the lens of control theory 

Section 3 introduced the concepts of control theory by describing 
their applications in peripheral physiology, motor control, and decision- 
making. This subsection first summarizes the theoretical “point of view” 
obtained from control theory, and then reviews several of the key ways 
in which control theory can be used to clarify brain-body interactions. 

Control theory provides a way to conceptualize how physiological 
systems can function reliably as a whole, despite being built from un
reliable parts. The dominant mechanism used by control theorists to 
ensure such stability is feedback, in which measurements flow from the 
underlying system being regulated (the plant) to the system doing the 
regulating (the controller). This constant flow of information from the 
plant to the controller helps the controller move the plant according to a 
desired trajectory, expressed physically as a reference signal. Fig. 6 
shows the process of allostatic control in the body using the language of 
control theory. 

Voluntary skeletomotor movements are controlled by central com
mands from the brain. The brain signals movements and bodily postures 
in terms of proprioceptive referent configurations, which then constrain 
the motor reflexes to minimize the difference between the reference and 
the actual prioceptive signal. This form of referent control extends all the 
way up through the brain, and in the form of posterior state estimates 
(see Fig. 6) provides an explanation for reafferent connections from 
sensory to motor areas of the cerebral cortex. We have hypothesized in 
this paper that referent control is shared between skeletomotor and 

Box 7 
Terminology. 

A sum of a function across timesteps, under a probabilistic expectation, is often called a “path integral”. Since the value function in APIC can be 
expressed in terms of a path integral, APIC falls within the class of SOC methods known as path-integral control (Kappen, 2005).  

20 See Sanborn (2017) for a review of sampling and variational approaches to 
approximate inference in the brain.  
21 See Ramstead et al. (2020) for a counterexample. 
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visceromotor modalities .22 Visceromotor reflexes, such as the carotid 
baroreflex, are responsible for controlling blood pressure in response to 
central commands from the brain. These visceromotor reflexes may use 
feedback control mechanisms that are similar to those used by skel
etomotor movements. This means that visceromotor reflex circuits, like 
the baroreflex, may only provide a single kind of feedback: the stabili
zation of movements, i.e., via the short loop between distal physiology, 
sensory surfaces, and peripheral reflex controllers (as in stretch reflex 
proprioceptors). Fig. 6 shows how visceral sense data ascend, in effect, 
to become exafferent interoceptive prediction errors, which combine 
with efferent interoceptive predictions to generate posterior state esti
mates. From the posterior interoceptive state estimates, the brain can 
estimate the allostatic capacities of the many controlled processes in the 
body. Optimizing the responsiveness of these allostatic capacities then 
finally “closes the loop” and provides a reference signal, constraining the 
central command signals from the brain to the motor reflexes. 

Predictions 
Above we have hypothesized that the visceral nervous system 

(including visceromotor efferents, interoceptive afferents, and the 
autonomic nervous system) operates, in its motor operations, via 
referent control. This would imply that interoception can be anatomi
cally segregated into motoneuron-interneuron-interoceptor reflexes that 
stabilize visceral “movements” (as in somatosensory modalities), and 
non-motor interoceptive endpoints, which serve another functional role. 
Rather than stabilizing a (visceral) “movement” that is constrained from 
the top down by central command, we suggest these visceral sense data 
may instead constrain the central commands themselves. Alternatively, 
empirical tests for controlled variables (Marken et al., 2001; Yin, 2013) 
could determine which physiological parameters elicit local, reflexive 
responses to disturbance. 

5.3. Interoception and capacity curves 

Section 2 introduced much of the physiology fundamental to this 
paper. It provided the distinction between regulated resources and 
controlled processes, and then described interoception as the predictive 
internal modeling of such variables. The section then described how 
capacity curves can quantify both the relations between variables and 
the objective of allostatic regulation. This subsection first clarifies the 
distinction between the actual state of the body and the interoceptive 
predictions constructed by the brain, and then elaborates on how that 
distinction affects the behavioral construct of “reward” in psychology. 

This paper maintained a careful distinction between visceral sense 
data, interoceptive predictions, and (re)afferent viscerosensory signals. 
The distinction must be carefully navigated, because it is not yet known 
where, neurophysiologically, the distinction between raw viscer
osensory data and prediction errors can be made. Most previous work on 
interoceptive predictive processing has assumed that peripheral inter
oceptive neurons fire in an entirely stimulus-driven way, without any 
modulation by descending predictions; this is because, to date, the large 
majority of research studying peripheral predictive coding has focused 
on the retina in certain model organisms (e.g., Srinivasan et al. (1982), 
Hosoya, Baccus, & Meister (2005), Liu, Hong, Rieke, & Manookin 
(2021)). However, some theories and at least one experiment take the 
other side of the issue. Theories of peripheral predictive coding (Sterling 
& Laughlin, 2015; Qian & Zhang, 2019) reason that a neuron’s most 
metabolically “cheap” responses should represent the predictable stim
uli, while “expensive” responses are reserved for the most surprising 
stimuli. Barrett (2017) has suggested that descending visceromotor 
prediction signals modulate viscerosensory data as it ascends through 

the brainstem and midbrain. Dworkin (1993) demonstrated that certain 
peripheral interoceptors in humans reduced their afferent firing rate to 
zero under a constant stimulus; since the stimulus remained the same 
while neural firing changed, the interoceptors in that experiment could 
not be entirely stimulus driven. We hope that interoception researchers 
will invest future experimental effort in interoceptive modalities to 
differentiate the effect of repetition suppression from the function of 
predictive coding. 

The question of where sense data are converted to prediction errors 
remains open, but it remains very likely that the brain issues intero
ceptive predictions, which are constrained and corrected by viscer
osensory sense data. The predictive processes taking place in the brain 
form a model of the innervated viscera, but they can only directly affect 
the viscera through visceromotor signals. The basic relation between the 
brain and the world outside itself applies in the interoceptive realm as it 
does in exteroceptive modalities. The brain can constrain (or influence) 
the body using motor signals, and actual bodily sense data constrain (or 
influence) the interoceptive contents of the brain’s internal model. 

Assuming that neither noise nor nervous dysfunction prevent the 
brain from accurately predicting the visceral sense data, we have hy
pothesized that the brain’s interoceptive representations contain both 
state estimates of the viscera and a functional analogue of allostatic 
capacity curves. The movement of estimated states along capacity 
curves, and the movement of the capacity curves themselves, then de
termines the brain’s estimate of allostatic responsiveness. We have hy
pothesized that increases in such responsiveness could function as 
“rewards”, positively reinforcing behavioral trajectories, while de
creases in responsiveness could function as “costs”, negatively rein
forcing behavioral trajectories. Such a hypothesis may account for 
alliesthesia (Cabanac, 1971) in decision making and behavior, in which 
the relation between an exogenous stimulus and the body’s internal 
state determines whether that stimulus positively or negatively re
inforces skeletomotor and visceromotor action (Barrett & Bliss-Moreau, 
2009; Barrett, 2017). This can include actions which alter the capacity 
curves themselves, such as relaxing the baroreflex gain during exercise 
to accommodate rising heart rate and blood pressure. 

Note that rewards are not always experienced as pleasant (e.g., the 
removal of something unpleasant to strengthen a behavior, called 
negative reinforcement) and not all stressors are experienced as un
pleasant (e.g., exercise), consistent with the suggestion that approach/ 
avoid features of behavior and pleasant/unpleasant affective features of 
experience are not always aligned. The degree to which behavioral and 
experiential “valences” align with each other in a given situation, and 
even the choice of which specific variables within behavioral and 
experiential processes to compare, remain largely open questions. 

Finally, this paper has taken a physiologist’s view of the innervated 
body, delineating regulated resources from controlled processes. The 
“ideal type” capacity curve treats the action of a controlled process as a 
function of an underlying regulated resource, and both variables receive 
peripheral interoceptive innervation. For example, glucose, glucagon, 
and insulin levels in the circulating blood are sensed separately. How
ever, in many cases, the body employs hierarchies of regulatory mech
anisms, making some controlled processes act as functions of other 
controlled processes. The baroreflex falls into this category. Thus, 
despite being a canonical interoceptive modality for experimentalists, 
the carotid baroreflex may actually be functionally atypical. The phys
iological differences between the baroreflex and chemosensing may 
provide some functional hints. The baroreflex forms an entire reflex 
circuit, whose visceromotor function under central command may 
resemble that of a somatomotor reflex (as suggested in Section 5.2 
above). 

Predictions Physiological questions about regulated resources versus 
controlled processes may be amenable to anatomical investigation: 
where a reflexive control circuit is found, it may reflect the monitoring 
of a controlled process. Where peripheral interoceptors report “raw” 
visceral sensations, without an intervening motor reflex circuit, that 

22 Note that this does not imply that people will have a sense of agency in 
controlling their autonomic nervous systems, as they do in skeletomotor 
control. 
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may reflect the sensing of a regulated resource. The open question then 
would be how the central nervous system determines which controlled 
processes act as functions of which regulated resources. Speculating 
somewhat further, if an anatomical difference existed between viscer
osensing of regulated resources and controlled processes, it would also 
enable inferences about the constraints provided for the brain by those 
respective viscerosensory endpoints. Interoception of regulated re
sources in relation to controlled processes would then constrain the 
brain’s representations of the allostatic responsiveness of behavior, its 
reference signal for movements. Interoception of controlled processes in 
relation to signaled top-down references would provide feedback to the 
brain that is analogous to what happens in somatosensory modalities: 
feedback stabilization of (visceral) movements. 

5.4. Conclusions 

Let’s return to our amateur dodgeball player. Under the hypothesis 
laid out in this paper, afferent sensory signaling (including viscer
osensory afferents) conveys prediction errors, which update a predictive 
internal model in the brain of the body on the dodgeball field. Motor 
processes exploit the updated model contents to improve the player’s 
performance. Playing dodgeball, and improving one’s performance, 
requires anticipating the physiological and metabolic demands of the 
game (which capacity curves can capture) and mobilizing the body’s 
internal visceromotor systems to meet those demands before they arise. 
APIC offers a formal model of how allostatic decisions could potentially 
be made, given the referent-control hypothesis of motor control. Thanks 
to APIC’s posing a soft forward optimization problem instead of a 
recursive, hard backward optimization problem (see Section 4.4), APIC 
may afford a simpler and more computationally tractable potential 
neural implementations than previous computational decision-making 
formalisms. 

Of course, within an allostatic view of the brain, the desire to play 
dodgeball does not arise ex nihilo, any more than a “desire” exists to 

maintain blood glucose within certain ranges. These desires (or “moti
vations”) are thought to begin as abstract conceptualizations (Barrett, 
2017) that predict allostatic capacities and interoceptive states (and can 
be described with low dimensional features, such as reward, stress, 
threat, and so on), monitoring the controlled processes that constitute 
the body’s physiology. The APIC model’s regulatory targets consist of 
ever-moving capacity curves, and so the hypothetical dodgeball player’s 
brain can both predict the accuracy with which their skeletomotor 
movements aim at other players, and (paraphrasing Klein (2018)) be 
motivated to improve their aim. We posit that this integration of inter
oception and allostatic control, played out across nested temporal and 
spatial scales, enables the brain to make the decisions and enact the 
movements that enable us to score well in dodgeball. 
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Appendix B. How ergodicity interacts with control 

B.1.1. Ergodicity: whether uncertainty and noise make a difference over time 

The concept of ergodicity formalizes the equivalence between present and future uncertainty or noise. In an ergodic system, averaging together a 
series of measurements taken over time is equivalent to averaging together the same number of measurements taken simultaneously with separate 
instruments. If we were to assume an objective function f(x) under an ergodic probability model p(xt), we would write that 

lim
T→∞

Ep

[
1
T
∑T

t=1
f (xt)

]

= Ep(xt)[f (xt)]. (B.1)  

This equation says that taking individual measurements f(xt) over any hypothetical period of time T and averaging them together (the left side of the 
equation) will yield the same result as just calculating the average measurement immediately (the right side of the equation). 

Conceptually, if we would like to know the average speed at which a particular kind of car travels on a highway, we could either track a single such 
vehicle over an extended period of time, or measure the speed of multiple vehicles (of the same kind) at the same time. In either case, as long as we 
took sufficiently many measurements, we would obtain the same result, whether we calculate by dividing by time or by the number of vehicles. 
However, the very obscurity of this thought experiment should hint to us that many real-world measurements are not ergodic. 

Situations that are not ergodic include those with periodic structure, or with irreversible changes. Our real lives are, therefore, filled with non- 
ergodic decisions to make: the cycles of day and night are non-ergodic; our development and aging processes are non-ergodic; injury and death 
are non-ergodic. Insofar as our internal environment has its own cycles (breathing, heartbeat, eating and drinking, etc.) it too is non-ergodic. The 
earliest brains contained body-clocks that synchronized bodily cycles to environmental cycles (Schulkin & Sterling, 2019); they were non-ergodic as 
well. This is why we invested the extra effort above of detailing a variety of control theory able to model non-ergodic decision-making. 

In contrast, many typical behavioral experiments involve their participants in ergodic decision-making problems: we choose as experimenters to 
treat averaging within-participant measurements across time as equivalent to averaging between-participant measurements. In fact, an experimental 
participant can become fatigued, bored, excited, hungry, or thirsty through the course of the experiment. If given food and drink, they can cycle 
between hunger, satiation, and then hunger again. Assuming ergodicity in experimental design implies ignoring all the bodily and environmental 
factors that we do not design, and which do not conform to our assumption. 

This has practical implications for decision-making processes in the brain, as well. Only in an ergodic problem can the brain rightfully equate 
averaging over the history of a real behavior with averaging over some population of mental simulations. This is why decision-making often involves 
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mental simulations over the entire course of a possible behavior, allowing the brain to account for cyclical or irreversible events. In fact, when we give 
people non-ergodic decision making problems in experiments, the evidence suggests subjects may solve them “the right way”, imagining the temporal 
course of possible futures (Peters, 2019). 

B.1.2. Formulating perception and control ergodically leads to the Free Energy Principle (FEP) 

The brain’s internal model allows it to regulate its body in a world full of uncertainty by means of visceromotor commands, obtaining feedback by 
anticipating the commands’ viscerosensory consequences as interoceptive predictions. These interoceptive predictions implement “top-down” sensory 
simulations, fashioned from past experiences, that are continually compared against information received from the viscerosensory surfaces about the 
actual state of the body in the world. 

These hypotheses can be integrated into an emerging theoretical consensus, dubbed predictive processing (Bar, 2009; Friston, 2010; Clark, 2013; 
Deneve & Machens, 2016; Hutchinson & Barrett, 2019). “Top down” sensory predictions continuously anticipate events within the body and outside it 
that are sensed via its sensory surfaces. Sensory prediction signals cascade across multiple gradients within the brain, including across the cerebral 
cortex (Huang & Rao, 2011; Zhang et al., 2019), cerebellum (Wolpert, Miall, & Kawato, 1998; Hull, 2020), and hippocampus (Buzsaki & Tingley, 
2018), as well as across all levels of the neuraxis, involving hypothalamus, basal ganglia, superior colliculus and various midbrain and brainstem 
structures (Kleckner et al., 2017). In fact, it is possible that every sensory neuron, in effect, receives some form of prediction signalling from some of the 
neurons projecting to it, and sends prediction errors23 to other neurons via its own projections (Deneve and Machens, 2016). “Bottom-up” information 
coming from the sensory surfaces (such as the retina, the olfactory bulb, and the lamina I spinothalamic tract) acts as sensory prediction error signals 
and is visualized as the dashed arrows in Fig. 6. In this way, the brain continuously maintains a simulation of the sensory environment inside the body, 
as well as the relevant aspects of the sensory environment outside the body, and updates that running simulation according to computed error. The 
updated simulations constitute approximately optimal posterior inferences about the likely causes of sensory events. 

Among predictive processing hypotheses of brain function, the free-energy principle (FEP) has enjoyed a particular popularity (Friston, 2010; 
Friston et al., 2010; Andrews, 2021). Under the ergodic assumptions of the Free-Energy Principle as formulated by Friston et al. (2010), organisms are 
hypothesized to minimize the entropy of their sensory outcomes 

H(o) = lim
T→∞

−
1
T

∫ T

0
dtlogp(o(t)) (B.2)  

= − log
∫

ds p(o(t), s(t)) , (B.3)  

where p(o(t), s(t)) is interpreted as a generative model of sensory outcomes o(t) with hidden variables s(t), evolving in continuous time. Note that the 
first integral is a time average (denoted by dt) and the second an ensemble average (denoted by ds). The authors of Friston et al. (2010) propose that 
organisms carry out this task by minimizing an upper bound to the sensory entropy, called the variational free-energy, which also appears in related 
predictive-coding models of perception. 

The equivalence of the time-average in Eq. (B.2) and the sample average in Eq. (B.3) is precisely the assumption of ergodicity discussed in B.1.1. 
This assumption renders the time-average equivalent to the instantaneous sample-average, making any one moment in time as good as any other for 
purposes of optimizing the free energy (or the entropy). Ergodicity also implies there exists a long-run stationary distribution, with no dependence on 
the start state or the particular sequencing of states s(t) across time. 

Under such assumptions, we can formulate an extraordinarily elegant control formalism just by writing the sensory outcomes as functions of action 
a(t), yielding an objective function 

H(o) = − log
∫

ds p(o(t, a(t)), s(t)) ,

and a variational bound in terms of approximate posterior beliefs q(s(t)) and their “free energy” F , 

− logp(o(t)) ≤ F [q(s(t)), a(t)].

The variational bound can then be used as a proxy for the true objective, and implies that action should descend the gradient of free energy to minimize 
long-run sensory entropy. As a side-effect of giving action the same objective functional as sensory prediction, this active inference formulation under 
the free-energy principle implies a (partial, contextual) equivalence between precision and value. Accumulating evidence becomes the only true good, 
while losing it becomes the only true ill, and precision is the parameter whose optimization most easily affords increasing evidence. Precision here is 
mathematical equivalent (up to some constant factors) to the gain or inverse-tolerance we described as a parameter to capacity curves in Section 2.2. 
We employ the separate terminology to make sure it is understood that precision measures the confidence of a probabilistic estimate of some quantity, 
while the gain or tolerance measures the steepness or shallowness of a regulatory response. 

Within this paradigm, active inference modeling has taken two general forms. Motor active inference (mActIf) tends to assume (local) ergodicity, so 
that local hill-climbing on the steady-state density becomes the best control strategy. In terms of classical control theory, when the reference signal is a 
set-point and disturbances are independently random across time, reactive behavior and homeostatic reflex arcs will suffice to maintain optimal 
regulation of physiology. In contrast, decision active inference (dActInf) maintains the appearance of ergodic homeostasis within the internal envi
ronment by writing a homeostatic distribution or “prior preferences” p(o∣m) (the notation of conditioning on m to write prior preferences comes from 
Friston et al. (2012)) and then using predictive decision-making to make internal states conform to that distribution. 

Under decision active inference, mental simulations “try out” potential policies, considering their effects over a finite time horizon, and policies 

23 Formally, score functions, the gradients of a log-likelihood. 
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thereby compete to control action based on their expected free energy. dActInf thus implements what control engineers would call model-predictive 
control with an information-theoretic objective (Williams, Drews, Goldfain, Rehg, & Theodorou, 2018). Similarly, the “prior preferences” function as 
what we would call homeostatic set-points and tolerances, as addressed in Stephan et al. (2016), Corcoran & Hohwy (2017), Pezzulo, Rigoli, & Friston 
(2018), and many similar works. Under ergodic assumptions, time-averaging may be invoked to interpret all physiological changes as (survivable) 
deviations from fixed homeostatic set-points with fixed tolerances. 

Ergodicity yields an especially elegant formulation of control because it collapses the distinction between information from the past and infor
mation from the future. The precise reason that stochastic optimal control problems are hard to solve is that computing the true optimal decision 
require knowledge of the future – not estimates, knowledge. Both mathematically and intuitively, you cannot really know you have chosen the best 
course of action without knowing the course of future events ahead of time. Without that knowledge, the best that any real controller, or brain, can do 
is to estimate the necessary quantities using all information available, make corrections as new information reveals itself, and wait until the notional 
end of a behavioral episode to evaluate performance retrospectively. Even small errors or misestimates compound, the further into the future you try 
to predict, because they cannot be corrected online by present sense-data. Unfortunately, a stochastic optimal control problem of the sort implied by 
the time-averaging we discussed in Section 4.2 requires prediction indefinitely far into the future. 

Of course, this is what the brain’s internal model is for: refining information contained in past sensory signals into the optimal estimate of the 
future. The optimal estimate of the future will probably still be off by some amount, but it nonetheless represents the best possible estimate that can be 
made given the information available. The actual brain never makes a truly optimal estimate, of course: it approximates the optimal estimate, 
effectively approximating an approximation of the unavailable future information. Even so, this approximately optimal estimation enables feedfor
ward, prospective control that performs drastically better than waiting to react until the body is actually challenged or harmed (Yeo, Franklin, & 
Wolpert, 2016). If you are walking on a dark road, and you see something that looks vaguely like a car careening towards you, you don’t wish for a 
more optimal estimate, you get out of the way. It is only in this sense of “prediction”, prediction without real-time correction, that predictive pro
cessing can be suitable for modeling sequential decision problems. 

This has implications for the low-level motor control strategy employed in regulating the viscera. Previous motor active inference accounts of 
visceromotor action have noted that visceromotor cortical areas mostly lack integration of ascending prediction errors, and hypothesized that they 
“function more like deterministic models of actions that are to be executed” (Barrett & Simmons, 2015). They then extend the analysis of Adams, 
Shipp, & Friston (2013) to the visceromotor domain: they conceptualize visceromotor efferent signaling as specifying visceral reference coordinates 
rather than “predictions” to be revised in a Bayesian sense (Chanes & Barrett, 2016; Smith et al., 2017). Continuing the analogy, they suggest that the 
uncertainty of visceromotor predictions specifies physiological tolerances (Penny & Stephan, 2014; Stephan et al., 2016). However, this account of 
visceromotor active inference implicitly relied on the ergodicity assumption embedded in motor active inference as a theory. Our model will relax this 
ergodicity assumption, while providing an alternative explanation for the anatomical observations motor active inference can explain. In short, we 
could consider our model a probabilistic way of encoding hierarchical referent control (Feldman, 2016) and the ideomotor principle (James, 1890). 
We gratefully thank investigators such as Corcoran et al. (2020) who have considered allostasis explicitly for setting the stage for our work, and 
emphasize that the lens of control theory is what enables us to separate the idea of a reference coordinate from that of a prediction. 

C.1. APIC model derivation details 

C.1.1. A hierarchical generative model with reference distributions 

The APIC model assumes a hierarchical generative model designed to explain sensory outcomes ot using hidden states s(1)t ,…, s(L)t across some 
number L ∈ [2, ∞) of levels. At each level of hierarchy l ∈ [1. . L], the variables ρ(0)

t ,…, ρ(L− 1)
t parameterize a reference distribution, written 

p(ot; ρ(0)
t ),

p(s(1)t ; ρ2
t ),

…
p(sL− 1

t ; ρ(L)
t ).

The parameters for reference distributions themselves come from multiple levels of policies, distributions π over lower-level goals or actions, 
conditioned upon higher-level states and goals: 

π(at
⃒
⃒ot, ρ(0)

t ),

π(ρ(0)
t

⃒
⃒s(1)t , ρ2

t ),

…
π(ρ(L− 1)

t

⃒
⃒s(L)t ).

At the bottom level, a joint likelihood predicts the exteroceptive, interoceptive, and somatosensory observations together, based upon the lowest-level 
hidden states and reference signals, 

pθ(ot
⃒
⃒s(1)t , ρ(0)

t ).

The prior densities for each hierarchical level l ∈ [1…L] are written 

pθ(s(L)1 )pθ(s(l)1

⃒
⃒
⃒s(l+1)

1 ),

and transition densities for each hierarchical level l ∈ [1…L] are written 
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pθ(s(L)t

⃒
⃒
⃒s(L)t− 1)pθ(s(l)t

⃒
⃒
⃒s(l)t− 1, ρ

(l)
t− 1, s

(l+1)
t ).

Fig. 10 displays the resulting complete graphical model for L = 4. 
The above prior densities and likelihood imply that by Bayes’ rule there exists a posterior distribution 

pθ(s(1)t , ρ(0)
t

⃒
⃒ot) =

pθ(ot

⃒
⃒
⃒s(1)t , ρ(0)

t )pθ(s(1)t , ρ(0)
t )

pθ(ot)
,

which APIC allows approximating by more-or-less any means. Since policies π also took the form of distributions above, Bayesian inference implies a 
posterior distribution over reference signals ρ and actions at as well. 

The complete state of the generative model can be abbreviated as 

s(1:L)t = (s(1)t ,…, s(L)t )

ρ(1:L− 1)
t = (ρ(1)

t ,…, ρ(L− 1)
t ),

xt = (at, ot, s(1:L)t , ρ(1:L− 1)
t )

x1:T = (x1,…, xT).

The complete reference distribution, across all hierarchical levels, can be written 

p(xt; ρ(1:L− 1)
t ) = p(ot; ρ(0)

t )
∏L− 1

l=1
p(s(l)t ; ρ(l)

t ), (C.1)  

and the complete transition dynamics as 

pθ(xt|xt− 1) = pθ(ot
⃒
⃒s(1)t , ρ(0)

t )π(at
⃒
⃒s(1)t , ρ(0)

t )pθ(s(L)t

⃒
⃒
⃒s(L)t− 1)π(ρ(L− 1)

t

⃒
⃒s(L)t )

∏L− 1

l=1
pθ(s(l)t

⃒
⃒
⃒s(l)t− 1, ρ(l)

t− 1, s(l+1)
t )π(ρ(l)

t

⃒
⃒s(l+1)

t , ρ(l+1)
t ),

where 

pθ(s(1:L)t

⃒
⃒
⃒s(1:L)t− 1 , ρ(1:L− 1)

t ) = pθ(s(L)t

⃒
⃒
⃒s(L)t− 1)

∏1

l=L− 1
pθ(s(l)t

⃒
⃒
⃒s(l)t− 1, ρ

(l)
t− 1, s

(l+1)
t ).

C.1.2. Full derivation of optimal value function and transition dynamics 

The differential Bellman equation is the defining principle of stochastic optimal control, an equation for the long-run value function. In the infinite- 
time, average-reward setting, assuming a global capture rate of J(x0) for a whole behavior, it can be written 

Ṽ ∗ (xt, xt− 1) = J (xt, xt− 1) − J̃(x0) + max
pθ(xt+1 |xt)

Epθ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)]

with the maximization taking place with respect to achievable (by varying the actions) transition distributions. Ṽ ∗ (xt , xt− 1) then denotes the best 
achievable value for any transition between individual states. Combining that expression with the transition dynamics as a Boltzmann or “softly 
maximizing” distribution will yield a generative model of the optimal transition dynamics, as seen in Eq. (15): 

q∗ϕ(xt+1|xt) =
exp(Ṽ ∗ (xt+1, xt))pθ(xt+1|xt)

Ext+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ]
.

This transition distribution optimally trades off between probable transitions and valuable transitions. The optimal transition distribution’s mode, 
when it can be calculated or approximated, corresponds to the most likely trajectory for an optimal agent (with the assumed goals) to follow (Todorov, 
2011). Writing it with a qϕ rather than a pθ denotes that it will be used as an observation-driven feedback controller, or more formally an importance 
sampling proposal. Just as the optimal transition distribution provides a generative model of an optimally controlled system, when used as an 
observation-driven proposal it also provides the optimal feedback controller. 

Substituting the optimal feedback controller back into the differential Bellman equation will yield 

Ṽ ∗ (xt, xt− 1) = J (xt, xt− 1) − J̃(x0) + Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)],

which can be further expanded by substituting Eq. (14) for J : 

Ṽ ∗ (xt, xt− 1) = J(xt, xt− 1) − DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
− J̃(x0) + Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)].

First, however, the information divergence penalty must be expanded in order to justify Eq. (17). First the divergence is written out in terms of its 
definition 
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DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
= Eq∗ϕ(xt+1 |xt)

[

log
q∗ϕ(xt+1|xt)

pθ(xt+1|xt)

]

= Eq∗ϕ(xt+1 |xt)

[
logq∗ϕ(xt+1|xt)

]
− Eq∗ϕ(xt+1 |xt)[logpθ(xt+1|xt)],

and then the definition of q*ϕ is substituted into the expectation of the logarithm, 

Eq∗ϕ(xt+1 |xt)

[
logq∗ϕ(xt+1|xt)

]
= Eq∗ϕ(xt+1 |xt)

[

log
exp(Ṽ ∗ (xt+1, xt))pθ(xt+1|xt)

Ext+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ]

]

= Eq∗ϕ(xt+1 |xt)

[

log
exp(Ṽ ∗ (xt+1, xt))pθ(xt+1|xt)

Ext+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ]

]

= Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt) + logpθ(xt+1|xt)] − logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ]

Eq∗ϕ(xt+1 |xt)

[
logq∗ϕ(xt+1|xt)

]
= Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)] + Eq∗ϕ(xt+1 |xt)[logpθ(xt+1|xt)] − logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ].

This substitutes into the equation for the divergence to imply that 

DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
= Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)] + Eq∗ϕ(xt+1 |xt)[logpθ(xt+1|xt)] − logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ] − Eq∗ϕ(xt+1 |xt)[logpθ(xt+1|xt)].

The second and last terms of this equation are identical, and so cancel. This leaves a divergence of 

DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
= Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)] − logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ],

and therefore a (subtractive) divergence penalty as seen in Eq. (17): 

− DKL
(
q∗ϕ(xt+1|xt) ‖ pθ(xt+1|xt)

)
= − Eq∗ϕ(xt+1 |xt)[Ṽ ∗ (xt+1, xt)] + logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ].

Substituting the above for the penalty in the differential Bellman equation will yield 

Ṽ ∗ (xt, xt− 1) = J(xt, xt− 1) − J̃(x0) + logExt+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ], (C.2)  

the smooth differential Bellman equation. This equation is smoothly maximizing instead of exactly maximizing, and thus more likely to be compatible 
with neural stochasticity. Its recursive term makes the weak assumption about the future that the trajectory will continue as planned according to the 
generative action concept. 

This equation can be shortened by applying the exponential function to both its sides, obtaining 

exp(Ṽ ∗ (xt, xt− 1)) = exp(J(xt, xt− 1) − J̃(x0))⋅Ext+1∼pθ(xt+1 |xt)[exp(Ṽ ∗ (xt+1, xt)) ],

and further shortened by defining the exponential of the value function as the desirability function, 

Z̃ ∗ (xt, xt− 1) = exp(Ṽ ∗ (xt, xt− 1)),

to finally obtain 

Z̃ ∗ (xt, xt− 1) = exp(J(xt, xt− 1) − J̃(x0))Ext+1∼pθ(xt+1 |xt)[Z̃ ∗ (xt+1, xt)].

In this form, the differential Bellman equation is linear, allowing its terms to be expanded recursively. For example, at time step t = 1 

Z̃ ∗ (x1, x0) = exp(J(x1, x0) − J̃(x0))Ex2∼pθ(x2 |x1)[Z̃ ∗ (x2, x1)]

Z̃ ∗ (x2, x1) = exp(J(x2, x1) − J̃(x0))Ex3∼pθ(x3 |x2)[Z̃ ∗ (x3, x2)]

Z̃ ∗ (x3, x2) = …  

and so on. When the expectations are regrouped together and moved to the outermost level, the equation as a whole can be written over a trajectory of 
length T as 

Z̃ ∗ (x1:T ; x0) = Epθ(x1:T |x0)

[

exp

(
∑T

t=1
J(xt, xt− 1) − J̃(x0)

)]

. (C.3)  

This path-integral form for the value/desirability function gives its name to the technique of path-integral control. Eq. (C.3) also provides exactly the 
term required by Eq. (15) for computing the optimal feedback controller or transition distribution. 
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