
Combinators for Modeling and Inference
Eli Sennesh*

Northeastern University
esennesh@ccis.neu.edu

Hao Wu*
Northeastern University
wu.hao10@husky.neu.edu

Jan-Willem van de Meent
Northeastern University

j.vandemeent@northeastern.edu

Abstract
We develop a combinator library for the Probabilistic Torch
framework. Combinators are functions accept and return
models. Combinators enable compositional interleaving of
modeling and inference operations, which streamlines model
design and enables model-specific inference optimizations.
Model combinators define a static graph from (possibly dy-
namic) model components. Examples of patterns that can be
expressed as combinators are mixtures, state-space models,
and models with global and local variables. Inference combi-
nators preserve model structure, but alter model evaluation.
Operations that we can represent as combinators include
enumeration, importance sampling, resampling, and Markov
chain Monte Carlo transitions. We validate our approach on
variational methods for hidden Markov models.

Introduction
Libraries such as Edward [13], Pyro [3], and Probabilistic
Torch [12], extend deep learning frameworks with function-
ality for probabilistic modeling. This enables users to define
deep generative models in which neural networks represent
data such as images and text, while defining structured pri-
ors on latent variables. Neural networks can also serve as
inference models mapping from data to latent variables. Both
can be trained jointly via autoencoding variational methods
[2, 9], which optimize a bound on the marginal likelihood
via a Monte Carlo estimate of its gradient.

While autoencoding methods hold tremendous appeal,
they are not a magic bullet. Models with local and global
variables, such as hidden Markov models with unknown
states and transitions, are particularly challenging. In autoen-
coders, the inference model predicts both levels of variable
at once. In doing so, it effectively performs one-shot infer-
ence. This is feasible for certain models [4], but overburdens
the inference network, which must “fully invert” the model
before sampling anything.

Classical Bayesian inference strategies often rely on prop-
erties of the model structure, for example, by iterating be-
tween updates to blocks of variables. In the HMM, we can
predict transition probabilities from the latent state sequence
or vice versa. Research in probabilistic programming has tra-
ditionally emphasized the development of broadly applicable
inference methods, which complicates model-specific op-
timizations. To address this need, we propose to develop
abstractions to specify models and inference strategies in a
modular and compositional manner.

Model and Inference Composition
In recent years, there have been a number of efforts to de-
velop specialized inference methods for probabilistic pro-
gramming. Venture [6] provides primitives for inference
programming that can act on subsets of variables in an exe-
cution trace. There has also been work to formalize notions
of valid inference compositionality. Hakaru [8] frames infer-
ence as program transformations, which can be composed
so as to preserve a measure-theoretic denotation [14]. Work
by Scibior et al. [11] defines measure-theoretic validity crite-
ria for compositional inference transformations, usable for
defining correct-by-construction algorithms.
Models in Probabilistic Torch are written in Python and

can make use of if expressions, loops, and other control
flow constructs. This means that models can dynamically
instantiate random variables in a data-dependent manner,
but also that it is more difficult to perform static analysis on
the computation graph [10]. To reason about inference in
the absence of static guarantees, we postulate the following
requirements for model and inference composition:

1. Composition is static, evaluation dynamic. Amodel
is statically composed from othermodels, but evaluates based
on data. In the HMM example, we can compose a model that
samples global parameters with a model for a sequence of
variably many states and observations. While the resulting
samples are dynamic, the model components always exist.

2. Inference composition preserves proper weights.
A model defines a density γ (x ;y), which may be unnormal-
ized, conditioned on some set of inputs y. Evaluation must
yield a properly weighted [7] sample (X ,W) such that, for all
measurable functions f ,

E[f (X)W] =
∫
f (x)γ (x ;y) dx .

We require that any inference operation must preserve this
property. Operations that satisfy this requirement include
importance sampling with a properly weighted proposal,
resampling, and application of a Markov chain Monte Carlo
(MCMC) operator.

Proper weighting implies that E[W] =
∫
γ (x ;y)dx = Z (y),

i.e. the weightW is an unbiased estimate of the normalizer.
For a parameterized density γθ (x ;y), we can approximate
the gradient ∇θ logZθ (y) using the Monte Carlo estimator∑

k

wk
θ∑

l w
l
θ

∇θ logγθ (xk ; y),

wherexk ,wk {γθ (x ;y) are generated by evaluating themodel.

(d) VBEM HMM(c) Combinator Based HMM

G
ro

u
n
d

 T
ru

th
In

fe
re

n
ce

(a) Trajectory (b) Displacement

Displacement Means Transition
Probabilities

Displacement Means Transition
Probabilities

G
ro

u
n
d

 T
ru

th
In

fe
re

n
ce

y
(t

)-
y
(t

-1
)

x
(t

)-
x
(t

-1
)

G
ro

u
n
d

 T
ru

th
In

fe
re

n
ce

Figure 1. Combinator-based variational inference in hidden Markov models. a): a bouncing ball trajectory with initial
velocity. b): and the displacement along x and y axis, respectively. c): Inferred travel directions and transition probabilities
from combinator-based variational Sequential Monte Carlo with the inclusive Kullback-Leibler divergence. d): Inferred travel
directions and transition probabilities from Variational Bayesian Expectation Maximization.

When we sample from an inference model qϕ (x | y), we
obtain weights wθ,ϕ = γθ (x ; y)/qϕ (x | y). Inspired by the
reweighted wake-sleep algorithm [1, 5], we can minimize
KL(γθ (x ; y)/Zθ (y) | | qϕ (x |y)) using the estimator

−
∑
k

wk
θ,ϕ∑

l w
l
θ,ϕ

∇ϕ logqϕ (xk | y).

Note that the gradient w.r.t. θ computes ∇θ logwθ,ϕ whereas
the gradient w.r.t. ϕ computes −∇ϕ logwθ,ϕ . In other words,
we can perform variational inference in any properlyweighted
model by automatic differentiation on the importanceweights.

Model Combinators
A model is a stochastic computation that returns a properly
weighted sample. Model evaluation can be conditioned on
a trace, which is an object that holds values for the set of
random variables that were instantiated during a particular
evaluation of the model. Combinators are functions that
accept models as inputs and return a model.

Most higher-order functions commonly used in functional
programming can be implemented as combinators. This in-
cludes, partial, compose, map, and reduce, which have the
usual type signatures. We add a recurrent loop combinator
recur(step, init, n), in which init is a model returning
an initial state, step accepts a state and returns another, and
n defines a number of iterations.
In addition to combinators that correspond to functional

programming constructs, we provide combinators for a num-
ber of model families, including mix(like, latent), which
accepts a likelihood like and a latent variable model latent.
The mix and recur combinators can be combined to define
ssm(like, step, init, n), which returns a state space
model based on the provided components.

Inference Combinators
By default, models have a likelihood weighting semantics:
a γ (x ;y) generates samples from a p(x ;y) with weightsw =

model compose, partial, map, reduce, recur, mix, ssm
inference importance, resample, smc, imh

Table 1. Combinators provided by Probabilistic Torch.

γ (x ;y)/p(x ;y). importance(p, q, size=None) acceptsmod-
els p and q, possibly unnormalized, and returns a model
targeting p using proposals from q. The optional argument
size gives the shape of the sample set requested. Given a
sample set, resample(p) returns a model that resamples at
the end of evaluation, returning samples with the average
weight of the sample set. smc performs stepwise importance
resampling as part of models defined using reduce, or recur.
Our framework will also support weight-preserving MCMC
transition operators, such as single-site Metropolis-Hastings
and Hamiltonian Monte Carlo (not yet implemented).

Evaluation
Figure1 shows inference results on simulated data. The data
models a bouncing particle trajectory in a closed box (Fig. 1a).
This trajectory has a piece-wise constant noisy velocity,
whichmeans that the displacements at each time step (Fig. 1b)
can be described by an HMM with Gaussian observations,
where each state’s observation mean corresponds to the
average velocity along one of four possible directions of
motion. We compare variational SMC inference results for
a combinator-based implementation (Fig. 1c) to those ob-
tained using variational Bayesian expectation maximization
(VBEM) (Fig. 1d), for a set of 30 time series that each con-
tain 200 time points. Because VBEM optimizes the exclusive
Kullback-Leibler (KL) divergence, DKL(q | | p), while in our
combinator-based inference we optimized DKL(p | | q), the
latter approximated the posterior with greater variance.

2

References
[1] Jörg Bornschein and Yoshua Bengio. Reweighted Wake-Sleep. Inter-

national Conference on Learning Representations, 2015.
[2] Diederik P. Kingma andMaxWelling. Auto-encoding variational bayes.

International Conference on Learning Representations, 2013.
[3] Uber AI Labs. Pyro: Deep Universal Probabilistic Programming. http:

//pyro.ai, 2017.
[4] Tuan Anh Le, Atılım Güneş Baydin, and Frank Wood. Inference com-

pilation and universal probabilistic programming. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statis-
tics, volume 54 of Proceedings of Machine Learning Research, pages
1338–1348, Fort Lauderdale, FL, USA, 2017. PMLR.

[5] Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and
Frank Wood. Revisiting Reweighted Wake-Sleep. arXiv:1805.10469 [cs,
stat], May 2018.

[6] VikashMansinghka, Daniel Selsam, and Yura Perov. Venture: A higher-
order probabilistic programming platform with programmable infer-
ence. arXiv, pages 78–78, March 2014.

[7] Christian Naesseth, Fredrik Lindsten, and Thomas Schon. Nested se-
quential monte carlo methods. In International Conference on Machine
Learning, pages 1292–1301, 2015.

[8] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. Probabilistic inference by program transfor-
mation in Hakaru (system description). In International Symposium
on Functional and Logic Programming, pages 62–79. Springer, 2016.

[9] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Sto-
chastic Backpropagation and Approximate Inference in Deep Genera-
tive Models. In Eric P. Xing and Tony Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 1278–1286, Bejing,
China, June 2014. PMLR.

[10] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel.
Gradient Estimation Using Stochastic Computation Graphs. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
3528–3536. Curran Associates, Inc., 2015.

[11] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen,
and Zoubin Ghahramani. Denotational Validation of Higher-order
Bayesian Inference. Proc. ACM Program. Lang., 2(POPL):60:1–60:29,
December 2017.

[12] N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Des-
maison, Noah D. Goodman, Pushmeet Kohli, Frank Wood, and Philip
Torr. Learning disentangled representations with semi-supervised
deep generative models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 5927–5937, 2017.

[13] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen
Liang, and David M. Blei. Edward: A library for probabilistic modeling,
inference, and criticism. arXiv:1610.09787 [cs, stat], October 2016.

[14] Robert Zinkov and Chung-chieh Shan. Composing inference algo-
rithms as program transformations. Uncertainty in Artificial Intelli-
gence, 2017.

3

http://pyro.ai
http://pyro.ai

	Abstract
	References

